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Abstract

Current libraries use an assortment of uncoordinated and unreliable techniques for

storing and managing their digital information. Digital information can be lost for a

variety of reasons: magnetic decay, format and device obsolescence, human or system

error, among many others. In this thesis, we address the problem of how to build

archival repositories (AR). An AR has the following combined key requirements that

distinguish it from other repositories. First, digital objects (e.g., documents, tech-

nical reports, movies) must be preserved indefinitely, as technologies, file formats,

and organizations evolve. Second, ARs will be formed by a confederation of inde-

pendent organizations. Third, published digital objects have a historical nature, so

changes should not be done in-place; instead, they should be recorded in versions.

We provide an architecture for ARs that assures long-term archival storage of digital

objects. This assurance guarantee is achieved by having a federation of independent

but collaborating sites, each managing a collection of digital objects. We also pro-

vide a framework for evaluating the reliability and cost of an AR. Finally, we present

techniques for efficient access of documents in a federation of independent sites.
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The advancement of human knowledge critically depends on the preservation of

knowledge gained in the past. Currently, more and more of that knowledge is stored

electronically, in the form of files, databases, web pages, and programs. Unfortu-

nately, most of the systems that store this information are not designed for preserv-

ing information over very long periods of time, and their information is vulnerable as

technologies and organizations evolve. Furthermore, the information is often stored

in an uncoordinated and unintegrated fashion. This can lead to the loss of important

components of the intellectual record. This problem will only get worse as more and

more information is provided only in digital form.

Digital information can be lost in many different ways and in Chapter 2, we will

study in detail the threats to digital information. Some of the major threats to digital

information are:

Media decay and failure: Natural decay processes, such as magnetic decay,

may make media unreadable. For reference, while microfilm has a life of 100 to 200

years, magnetic tapes decay in only 10 to 20 years. Media may also fail when it is

being accessed, e.g., a tape may break when in a reader, or a disk head may crash

into a platter.

Access Component Obsolescence: A document may be lost if we do not have

one of the components necessary for supporting access to it. For example, components

required to access documents stored in a floppy disk include a floppy drive and the

drivers to access it. If we have a document in a 8 inch floppy disk, but we do not

have a 8 inch floppy drive, we will not be able to access the document (even if the

media is still readable).

Human and Software Errors: Documents can be damaged by human errors

or by software bugs. For example, a person or a program may delete a document

(e.g., by reformatting the disk that holds the document), or may improperly modify

the files and data structures that represent the document (e.g., by writing random

characters in the middle of the document).

External Events: Events external to the archival repository, such as fires, earth-

quakes and wars, may of course also cause damage.
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When considering long-term preservation of digital objects, there are two inter-

related factors: data and meaning preservation. To illustrate, consider the Mayan

inscriptions on their temples. For us to “read” them, first the carvings and paintings

had to be preserved (data preservation) over the centuries. Second, the meaning of

their hieroglyphs had to be decoded. Thus, to preserve the meaning there needs to

be some translation machinery, which is based on a lot of guesswork (as in the case of

Mayan writings), or aids left behind (which are of course extremely hard to provide in

advance). The translation could be done gradually and continuously, to avoid span-

ning large differences in representations (e.g., translating a document in MS Word 4

to Word 5 to Word 6).

In this dissertation we focus on data preservation only. This is admittedly the

much simpler of the two problems, but clearly, without data preservation as a first

step, meaning cannot be preserved. Thus, we view a digital object as a bag of bits

(with some simple header information, to be discussed). We will not concern ourselves

here on whether this object is a postscript file (or any other format), the document

that explains how postscript is interpreted (an aid for preserving the meaning of the

postscript file), or an object giving the metadata for the postscript file (e.g., author,

title). However, we do wish to preserve relationships among objects. That is, we will

develop an identification scheme so that one object can “point” or “reference” another

one. This way, for instance, the metadata object we just discussed can identify the

postscript file it is describing.

Our approach to dealing with the problem of data preservation is to build a

reliable archival repository that protects digital information from failures. Users who

create digital documents would deposit these documents in their local repository. This

repository would then take whatever actions were necessary to protect the documents.

Our vision of an archiving system is built on several principles:

• Write-once archiving: Documents, once archived, are never modified or deleted.

Updates to documents are represented as version chains.

• Federated replication: A federation of archives work together, storing copies of

each others’ data so that if a site fails, no documents are permanently lost.
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• Scientific design: The policies for constructing and operating an archiving sys-

tem should be studied scientifically, to find the most reliable and resource effi-

cient techniques.

• Robust operation: The system should be robust in the face of failures. This

means both that documents are preserved, and also that the system operations

(document replication, content searches, and so on) continue to run.

Building an archival repository is a complex task because the problem of long-

term preservation entails not only a large number of uncertainties about the future,

but also a large number of configuration options that could impact the reliability

of the system. For example, how many copies should we make of each document?

How frequently should we check these copies for corruption? Should these copies

be stored on a few expensive disks or many cheap disks? In addition, the designer

needs to predict future events such as the reliability of sites and disks, survivability

of formats, how many resources will be consumed by the recovery algorithms, how

frequently the recovery algorithms will be invoked, how many user accesses will be

made to the documents, and many other uncertainties. In addition to the challenges

of long-term preservation, an archival repository is only useful if the documents can

be accessed and found efficiently.

Given our problem definition, the reader may wonder if data preservation is a

solved problem. After all, a database system can very reliably store objects and

their relationships. This may be true, as long as the same or compatible software is

used to manage the objects, but it is not true otherwise. For instance, suppose that

the Stanford and MIT libraries wish to store backup copies of each other’s technical

reports, but they each use different database systems. It is not possible (at least

with current systems) to tell the Stanford system that an object is managed jointly

with MIT. Similarly, if Stanford’s database vendor goes out of business in 500 years,

or Stanford decides to use another vendor, migrating the objects elsewhere can be

problematic, since database systems typically represent reliable objects in ways that

are intimately tied to their architecture and software.
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The objective of our work is not to replace database systems, but rather to allow

existing and future systems to work together in preserving an interrelated collection

of digital objects (and their versions) in the simplest and the most reliable possible

way. We aim for a system that provides preservation, even if some efficiency is lost,

while ensuring the autonomy of individual archives. Our work complements other

investigators’ in areas such as preserving digital formats, ensuring the security of dig-

ital objects against malicious users, encoding semantic meaning in digital documents,

and so on.

This dissertation is divided into three main parts: (i) design and evaluation of ARs

(Chapters 2 and 3), (ii) a reference architecture and algorithms for ARs (Chapters 4

and 5), and (iii) efficient access of ARs (Chapters 6 and 7). Relevant related work is

covered in each chapter of the dissertation. Specifically, in this dissertation we study:

• AR Reliability Analysis (Chapter 2): In this chapter we study the archival prob-

lem, how a digital library can preserve electronic documents over long periods

of time. We analyze how an archival repository can fail and we present different

strategies to help solve the problem. We introduce ArchSim, a simulation tool

for evaluating an implementation of an archival repository system and com-

pare options such as different disk reliabilities, error detection and correction

algorithms, and preventive maintenance.

• AR Design Methodology (Chapter 3): Building on the evaluation tools presented

in Chapter 2, we study the design of archival repositories. Designing an archival

repository is a complex task because there are many alternative configurations,

each with different reliability levels and costs. The objective of this chapter is

to be able to answer questions such as: how much would it cost to have an

AR with a given archival guarantee? Or the converse: given a budget, what

is the best archival guarantee that we can achieve?. We achieve this objective

by systematically and scientifically analyzing each step of the design with the

aid of an ArchSim extension that models and evaluates costs. In summary,

in this chapter, we study the costs involved in an Archival Repository and

we introduce a design framework for evaluating alternatives and choosing the
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best configuration in terms of cost. The design framework and the usage of

the ArchSim extension are illustrated with a case study of a hypothetical (yet

realistic) archival repository shared between two universities.

• Cellular Repository Architecture (Chapter 4): In this chapter we present a ref-

erence architecture for archival repositories. This architecture is formed by a

federation of independent but collaborating sites, each managing a collection

of digital objects. The architecture is based on the following key components:

use of signatures as object handles, no deletions of digital objects, functional

layering of services, the presence of an awareness service in all layers, and use

of disposable auxiliary structures. Long-term persistence of digital objects is

achieved by creating replicas at several sites.

• Awareness Algorithms (Chapter 5): One of the most critical components in

an AR is the awareness mechanism, used to notify clients of inserted, deleted

or changed objects. In this chapter we survey the various awareness schemes

(including snapshot, timestamp and log based), describing them all as variations

of a single unified scheme. This makes it possible to understand their relative

differences and strengths. In particular we focus on a signature-based awareness

scheme that is especially well suited for digital libraries, and show enhancements

to improve its performance.

• Routing Indices (Chapter 6): Finding information in a large federation of ARs,

such as the one proposed in Chapter 4, currently requires either a costly and

vulnerable central index, or flooding the network with queries. In this chapter

we introduce the concept of Routing Indices (RIs), which allow ARs to forward

queries to neighbors that are more likely to have answers. If an AR cannot

answer a query, it forwards the query to a subset of its neighbors, based on

its local RI, rather than by selecting neighbors at random or by flooding the

network by forwarding the query to all neighbors. We present three RI schemes:

compound, hop-count, and exponential. We evaluate their performance via sim-

ulations, and find that RIs can improve performance by one or two orders of
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magnitude vs. a flooding-based system, and by up to 100% vs. a random for-

warding system. We also discuss the tradeoffs between the different RI schemes

and highlight the effects of key design variables on system performance.

• Semantic Overlay Networks (Chapter 7): Current network topologies for large

federations of nodes, such as the ones used in P2P networks, are usually gen-

erated randomly. Each node typically connects to a small set of random nodes

(their neighbors), and queries are propagated along these connections. Such

query flooding tends to be very expensive. We propose that node connections

be influenced by content, so that for example, nodes having many “computer

science” documents will connect to other similar nodes. Thus, semantically re-

lated nodes form a Semantic Overlay Network (SON). Queries are routed to

the appropriate SONs, increasing the chance that matching files will be found

quickly, and reducing the search load on nodes that have unrelated content.

We conclude this thesis by discussion challenging open problems in Chapter 8.
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2.1 Overview

One of the main challenges in designing an archival repository (AR) is how to configure

the repository to achieve some target “preservation guarantee” while minimizing the

cost and effort involved in running the repository. For example, the AR designer may

have to decide how many computer sites to use, what types of disks or tape units

to use, what and how many formats to store documents in, how frequently to check

existing documents for errors, what strategy to use for error recovery, how often to

migrate documents to a more modern format, and so on. Each AR configuration leads

to different levels of assurance; e.g., on the average a document will not be lost for

1000 years, or in 1000 years we expect to still have access to 99% of our documents.

Each configuration has an associated cost, e.g., disk hardware involved, computer

cycles used to check for errors, or staff running each site.

The number of options and choices is daunting, and the AR designer has few good

tools to help in this task. The traditional fault tolerance models and techniques, of the

type used to evaluate hardware, are a helpful starting point, but they do not capture

the unique complexities of ARs. For example, traditional models may have difficulty

capturing different document loss scenarios (e.g., missing interpreter, missing bits,

missing metadata) and they frequently assume failure distributions (e.g., exponential)

that are too simplistic.

In this chapter we present a powerful modeling and simulation tool, ArchSim,

for helping in AR design. ArchSim can model important details, such as multiple

formats, preventive maintenance, and realistic failure distribution functions. ArchSim

is capable of evaluating a large number of components over very long time periods.

ArchSim uses specialized techniques in order to run comprehensive simulations in a

time frame that allows the exploration and testing of different policies.

Of course, no model can be absolutely complete: there is an intrinsic tradeoff

between how detailed the model is and the complexity (even feasibility) of its analysis.

In our case, we have chosen to ignore (at least in this initial study) information loss

due to format conversion (migration to a new format is always successful and does

not introduce any loss). We also do not model partial failures (a failure in which we
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can salvage part, but not all, of the information in a device). As we will see, we also

rely on an “expert” that can provide failure distributions for the components of the

systems. For instance, if format obsolescence is an issue, an expert needs to give us

the probabilities of different format lifetimes.

In summary, in this chapter we present:

• A comprehensive model for an AR, including options for the most common

recovery and preventive maintenance techniques (Sections 2.2, 2.3 and 2.4).

• A powerful simulation tool, ArchSim, for evaluating ARs and for studying avail-

able archival strategies (Section 2.5).

• A detailed case study for a hypothetical Technical Report repository operated

between two universities. Through this case study, we evaluate AR factors such

as disk reliability, handling of format failures, and preventive maintenance.

2.2 Archival Problems and Solutions

We define an Archival Repository (AR) as a data store that gives a guarantee of long-

term survivability of its collection. We will refer to each unit of information in the

AR as an Archival Document or just document for short.

As a first step in modeling and evaluating ARs, it is important to understand how

information can be lost, and what techniques can reduce the likelihood of loss.

2.2.1 Sources of Failures

An AR fails to meet its guarantee when the archive loses information. Such a loss

may be caused by a variety of undesired events, such as the failure of a disk, or an

operator error. A document is lost if the bits that represent it are lost, and also if

the necessary components that give meaning to those bits are lost. We define the

components of a document to be all the resources that are needed to support access

to the document, e.g., the document bits, the disk that stores the bits, and the viewer

that interprets the bits.
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An undesired event does not necessarily cause information loss. For instance, if

the AR keeps two copies of a document, and the disk holding one of the copies fails,

then the document is not lost. It would take a second undesired event affecting the

second copy to cause information loss. A document is damaged if a copy or instance

of one of its components is corrupted or lost. Damaged documents should be repaired

by the system to protect them from further failures.

The most common undesired events that may lead to the loss of a document can

be broken down into the following categories. (We do not consider transient failures,

e.g., a power failure, that do not lead to a permanent loss.)

Media decay and failure: Natural decay processes may make media unreadable.

A well known example is magnetic decay, occurring when media loses its ability to hold

the “bits” that encode a document. In Figure 2.1, we summarize typical decay times

for electronic media [8]. These decay times assume “good” storage and operating

conditions, and infrequent accesses. Note that decay typically does not affect all

parts of a tape or disk simultaneously. For example, a few bits may first decay,

rendering a document (or part of a document unreadable), followed by other decays.

Figure 1 gives times to the first decay.

Media Decay Time

Magnetic Tapes 10-20 years
CD-ROM 5-50 years
Newspaper 10-20 years
Microfilm 100-200 years

Figure 2.1: Typical Media Decay Times

Media may also fail when it is being accessed; e.g., a tape may break when in a

reader, or a disk head may crash into a platter. The likelihood of failure increases

with the frequency that the medium is accessed. For example, the expected life of a

hard disk that starts and stops spinning very frequently is 5 years, while it is 10 to

20 years for an inactive disk.

Component Obsolescence: A document may be lost if we do not have one of
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the components necessary for supporting access to it. To illustrate, we describe two

important forms of component obsolescence: media obsolescence and format obsoles-

cence. Media obsolescence occurs when we do not have a machine that can read the

medium (even if the medium is still readable). Format obsolescence happens when

the system does not know how to interpret the bits that are encoded in the medium.

This kind of failure is the result of the non-self-describing nature of information stored

in electronic media. That is, the stored bits must be transformed into a human com-

prehensible format by a process that cannot be inferred from the original bits. For

example, say we have a postscript document. To view it, we must (a) know that its

format is some particular version of postscript, (b) have a program that can interpret

that version of postscript and display the document on a screen (or printer), and (c)

have a computer that can execute the code for the program. If we do not have any

of these components, then we cannot access the Postscript document.

Human and Software Errors: Documents can be damaged by human errors

or by software bugs. Reference [37] suggests that humans and software are the most

serious sources of failures. Better technologies and designs are reducing media decay

and component failure rates, but there is no sign of a drop in the rate of faults created

by software and human errors.

External Events: Events external to the AR, such as fires, earthquakes and wars,

may of course also cause damage. Such events may cause several AR components to

fail simultaneously. For example, a flood can destroy a collection of disks at one site.

If a document were replicated using those disks, all copies would be lost.

2.2.2 Component Failure Avoidance Techniques

There are two well-known ways to avoid an AR failure: we can either reduce the

probability of component faults, or we can design the AR so those faults do not

result in document loss. In this subsection, we review techniques in the first category,

while the next subsection will cover the second category. We organize the presentation

in this subsection using the taxonomy of faults presented in Section 2.2.1.
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Media decay and failure

A fundamental decision in designing an AR is which medium will be used. In this

subsection, we first outline how we can choose the appropriate medium for an AR.

Then, we present strategies that allow reduction of the rate of decay and failure for

these media.

The question of which medium to use involves two decisions. First, we need to

decide on the access properties that will be needed from the medium. Second, we

need to find the most cost-effective technology that provides these access properties.

By access properties, we mean the characteristics of the medium such as how fast can

we start reading the medium, how fast can we find a document, if we can rewrite a

document without having to rewrite the whole medium, etc.

The reason we need to consider the access properties is that they will affect how

we design our system. For example, the time that it takes to start accessing a medium

will have an impact on the available strategies to reduce Media Decay. Specifically,

on-line media (i.e., media with very little initial delay) allow for easy detection of

decay, as it is cheap to access all the information periodically. On the other hand,

detecting decay on off-line media is more complicated because it is expensive to load

and read the media. Nevertheless, we need to recognize the tradeoffs between different

kinds of media, as off-line media tend to have a lower cost of maintenance and a longer

expected life than on-line media.

In terms of underlying technologies, there are many alternatives for archival media.

In our work, we have concentrated on “digital” media; however, the boundary between

digital media and paper has been diffused by some interesting new media that have

been developed recently. For example, “PaperDisk” technology uses 2D barcodes to

print electronic information on paper [2]. The barcodes can then be scanned back into

the computer and transformed into digital information. By using special algorithms,

this technology can save up to 1Mb of information on a sheet of paper.

For ARs, the most important factor in choosing media technology is its lifetime.

Evaluating the lifetime of media technologies is a complicated process. Media lifetime

is nearly impossible to determine in practice (we cannot wait “n” years for the medium

to fail). Therefore, estimates are based on the physical properties of the medium. The
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challenge is to find which are the relevant properties (so we can find the weakest link)

and what is the appropriate model of decay for those characteristics. For example, a

CD-ROM is basically a reflective layer sandwiched between a clear substrate and a

lacquer film. A CD-ROM can fail because of either the deterioration of the reflective

layer or because of the loss of optical clarity of the substrate. Deterioration of the

reflective layer can occur because of oxidation, corruption, or delamination. As these

three sources of deterioration are well known for the materials used in the reflective

layer, we can predict when they will deteriorate and eventually fail. Similarly, we can

study the causes for losing optical clarity of the substrate and try to predict when

this failure will occur.

Beyond the choice of which medium to use, we need to make certain that the

medium is stored in the best conditions to ensure its preservation. In the case of

tapes, a controlled environment with low temperature and low humidity may increase

the life of the tape in an order of magnitude [9].

Component Obsolescence

Avoiding component obsolescence is a complex problem, as an accurate prediction of

which operating systems, document formats, and devices will be used in the future is

impossible. However, there are some techniques that help avoid the component obso-

lescence problem. In this subsection, we will briefly explore three of these techniques:

usage of standards, self-contained media, and preservation of equipment. In the next

section, we will study system techniques that can lessen the problem of component

obsolescence.

One way to avoid the component obsolescence problem is to use standards. Stan-

dards are (usually) well-documented, which may allow the re-creation of readers for

that standard. However, there are some problems with standards. First, there is a

bootstrap problem: a person recreating a reader needs to be able to read the doc-

umentation for the standard. Second, an important risk when using a standard is

that many documents that claim to follow a standard are not really 100% compliant.

For example, most HTML documents on the web do not use HTML correctly, so a
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browser that is built to accept only correct HTML will not be able to display most

documents.

Another solution to the obsolescence problem is the preservation of equipment.

This approach has been attempted by the National Media Lab, but it is a difficult

and costly task, especially when the parts needed to repair preserved equipment are

no longer available.

Another interesting proposal for solving the problem of component obsolescence

is the use of a self-contained medium such as the electronic tablet [42]. The electronic

tablet is a portable computer that contains all the necessary hardware and software

(as well as data) to make a document readable. The only needed input for this

tablet is a power source. Although the electronic tablet also solves the component

obsolescence problem (as everything needed to read the document is in the tablet),

no tablets have been built and it is yet to be determined how cost efficient they will

be.

Human/Software Errors

As stated before, human and software errors are the fastest growing source of faults

in computer systems. Beyond traditional techniques such as program validation, and

user training, some specific guidelines are useful in an AR. These guidelines include:

• Define interfaces that minimize the amount of damage that can be done: For

example, by not allowing deletions or updates in the AR, users cannot make

mistakes that will result in the deletion of a file. In addition, by defining a

restricted interface, it is easy to distinguish between faults and the normal

operation of the system. For instance, if a file disappears in a system that does

not allow deletions, then we know that a fault has occurred.

• Minimize the amount of code that can cause damage: The assumption is that

the smaller the amount of code, the better the chance that it can be extensively

tested and verified.

• Use hardware safeguards to prevent software errors: Hardware can help pre-

vent damage to documents. For example, by opening the “read-only tab” in a
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diskette, we instruct the hardware to disallow any writes to it. Another com-

monly used hardware protection is virtual memory that can be used to prevent

unauthorized writes to some memory addresses.

External Events

A range of techniques can be used to prevent damage from external or environmental

events. These techniques include, for example, fire-proof walls, earthquake-proof

buildings, etc. These avoidance techniques are beyond the scope of this thesis and

will not be discussed further.

2.2.3 System-Level Techniques

Migration

Migration involves replacing a document component with a new, safer one. For exam-

ple, suppose that “Postscript” readers are becoming obsolete and are being replaced

by new “Postscript II” readers. Then, we may decide to migrate Postscript docu-

ments into the new format before Postscript readers become unavailable. Migration

is particularly effective for storage devices. However, migrating to new formats is

more challenging because some information may be lost in the transformation.

Migration techniques can be classified in a continuum, ranging from passive strate-

gies to active strategies. In Figure 2.2 we show the spectrum in the context of reducing

media decay. In the figure, we can see that passive strategies include reducing the

media decay time by either using better media or storing media in a “controlled” envi-

ronment. Active strategies attempt to reduce media decay by reading and copying the

data periodically. When the copies are made over the same medium, the strategy is

called periodic refreshing. When the copies are made in a different medium, then the

strategy is usually called periodic migration. There are many tradeoffs between ac-

tive and passive strategies. In general, passive strategies have the advantage of lower

use of resources than active strategies, but, unfortunately, they also provide a lower

probability of preservation. Active strategies have a high probability of preservation,

but they consume more resources. This last point is one of the reasons why archival
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models are needed; designers need to make strategy decisions that achieve their target

archival guarantee while reducing the total amount of resources consumed.

Control 
Storage
Environment

Periodic
Refreshing

Periodic
Migration

Passive

Use
Better Media

Active

Figure 2.2: Reducing Media Decay

Finally, migration can also be used to avoid component obsolescence. However,

performing a migration process that does not lose some information or formatting is

frequently impossible (especially when used transitively, that is, when a document in

a given format is migrated to another format, and then in turn is migrated into yet

another format). For example, consider translating an ancient text from Greek to

Latin, and then from Latin to English. Most people would agree that if the Greek

version were available, a direct translation from Greek to English would be better.

Replication

Replication makes copies or creates new instances of needed components, to ensure

the long term survival of the component. For example, to prevent media failure, we

can write the document onto multiple tapes. If one of the tapes is damaged, then we

can use the remaining tapes to access the document. Replication can also be used to

survive component obsolescence. For example, a document can be written in multiple

formats; in this way, if a format becomes obsolete, we can still access the document

in another format.

Unfortunately, replication by itself does not improve the mean time to failure

(MTTF) of a system. In [37], it is shown that without repairs the MTTF of a

systems may decrease when using replication. Specifically, to obtain a benefit from

replication, after a failure has been detected, we should repair it as rapidly as possible.

An additional advantage of replication is that it simplifies failure detection. If

we keep three copies of a document in three different tapes and one of the copies
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is different, then we can assume, with very high probability, that the copy that is

different has failed and should be discarded.

Replication is used by many archival system including the Computing Research

Repository [34], the Archival Intermemory Project [28, 13], and the Stanford Archival

Vault [17].

Emulation

Emulation involves recreating all the components needed to access a document on

a new platform [70]. Emulation can be done at several levels: hardware, operating

system, or application software. The computer game community has embraced emu-

lation, and many “platform” emulators are available that allow old computer games

to run on modern computers.

The main advantage of emulation is that it can potentially improve the scalability

of archival systems. This scalability improvement is the result of emulation recog-

nizing that components are frequently stacked on top of each other (e.g., to read

a document, we need to run software, which needs an Operating System, which in

turn needs some specific hardware). By choosing an appropriate level, let us say the

Operating System level, we do not need to worry about components higher than this

level. In other words, if we produce an emulator of Windows 98, we do not need

to do anything special in order to use all the programs currently available for that

platform. (On the contrary, with all other system solutions, we would need to concern

ourselves with each possible component independently of each other.) In addition to

this benefit, emulation better preserves the “look and feel” of the original application

(which may be important in some fields).

One major disadvantage of emulation is its feasibility. Emulating a piece of soft-

ware/hardware can be a tricky and difficult task that requires a lot of engineering

and collaboration from the current producers of the component. Additionally, the

task may infringe on industrial property and copyright laws. In addition, the benefits

of emulation may not materialize in many situations. For example, if we have a rela-

tively uniform collection of documents, the cost of producing an emulation system will

probably be much higher than the cost of using replication. In addition, preserving
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the “look and feel,” while important in some contexts, can be negative in others (e.g,

we do not want to preserve the “feeling” of waiting a couple of days for the answer

to a query when accessing an archival database).

Fast Failure Detection and Repair

With most system fault tolerance techniques, we need to check periodically for failed

documents. Fast failure detection and repair yields improved reliability. For example,

if one of two component copies have failed, the sooner we detect the problem and

generate a new copy, the more protection we have against a second fault.

In general, it is impractical (and sometimes impossible) to detect exactly when a

fault in a component has occurred. This is because the manifestation of the fault,

an error, might only appear long after the fault occurred. For example, a tape can

deteriorate and lose information (a fault), but we will not know that the tape has

failed until we attempt to read the data and we get an error. Testing for errors may be

a difficult task. A typical system has a very large number of components and it would

take a long time to check all of them for errors. In order to reduce the time spent in

finding errors, we can use sampling (by time or component type). We can also use

partial checks or predictors to select the components that have a high probability of

failure.

• Time-based samples: Documents are probed at specific intervals of time so the

probability of losing a document due to multiple failures is small. Obviously,

the challenge of this technique is finding the appropriate time interval. Later, in

the experiments section of this chapter, we will see how can we use simulations

to find good detection intervals.

• Component-based samples: This technique probes components instead of indi-

vidual documents, an especially useful approach when the number of compo-

nents is much smaller than the number of documents. Specifically, the system

will perform a test on the component, under the assumption that if the compo-

nent passes the test, it is most likely that the component will successfully work

for all documents. A way to perform the test is to select one document (or some
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small number of documents) that use a component and try to access them; if

we succeed, then the component is considered operational, if not, then we have

detected a fault. Specifically, if we are testing the postscript renderer, we can

select a document and attempt to display it; if we succeed, when using this

technique, the system will assume that it will be able to render all documents

stored in that format.

• Partial checks: This technique probes a small part of the documents. We thus

assume that if “part” of the document is not damaged, the whole document is

undamaged. For example, if we have a Postscript document, we can just try to

print the first page; if we succeed, then we can assume that the rest of the pages

can be printed too. Similarly, to test a disk, we only check a few blocks; if those

blocks are undamaged, then we assume that the whole disk is undamaged.

• Predictors: We can use “indirect” information to predict the likelihood of a

fault in a component. For example, if a new format has been released as a

replacement of a format in which we have documents stored, we can use this

information as a predictor of the obsolescence of the old format. Similarly, some

hardware systems provide warnings of the approaching end of the life of the

device. For example, Compaq’s Intellisafe [16], and Seagate’s S.M.A.R.T. [60]

measure several disk attributes, including head flying height, to predict failures.

The disk drive, upon sensing degradation of an attribute, such as flying height,

sends a notice to the host that a failure may occur. Upon receiving this notice,

users can take steps to protect their data.

After we have detected that a failure has occurred or if we are predicting an

imminent failure, we should repair the component as soon as possible. The longer we

wait for the component to be repaired, the higher the risk that another failure will

lead to information loss. There are many standard techniques for fast repair, such as

having spares available, having parts available and the training of repair personnel.
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Figure 2.3: Archival Repository Model

2.3 Architecture of an Archival Repository

Our goal in this section is to identify the elements of a typical AR, so we can model

each element and study how it impacts reliability. A typical AR stores documents in a

data store that can fail. The AR can still achieve long-term survivability by enhancing

the data store with an archival system (AS) that implements some of the techniques

of Section 2.2.3. We present our AR model in Figure 2.3. The figure shows the AS

modules (in solid-line boxes), the non-fault-tolerant store (in a dashed-line box), and

the archival documents. The arrows represent the runtime interactions between the

elements.

2.3.1 Archival Documents

In our architecture, an archival document embodies information. An archival docu-

ment cannot be just a bag of bits, but it must also include components necessary to

transform the bits into a human comprehensible form.

An archival document is an abstract entity. The connection between document

and access to it is achieved through materializations. A materialization is the set of

all the components necessary to provide some sort of human access to a document.

For example, a materialization may include the bits, disks, and format interpreters
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necessary to display a technical report. The same technical report may be accessible

through a different materialization, which may include a different format interpreter

to print the technical report.

We illustrate materializations in Figure 2.4. In the figure, there are two archival

documents. Each of these documents has two different materializations. For example,

Materialization 1 requires the following components to be available: File 1, Site A,

Disk 1, and a ASCII printer. Incidentally, note that File 1 is stored on Disk 1, which

in turn is at Site A. Such component interdependencies will be discussed later, when

we model materialization failures.

The AR is able to preserve documents by preserving the materializations and their

components. In this chapter, we treat the documents as “black boxes.” We do not

attempt to take advantage of document structure (e.g., chapters in a book).
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2.3.2 Architecture of the Non-Fault-Tolerance Store

The Store encompasses the set of components, such as sites, disks, or format inter-

preters that make materializations accessible. Because the store is not fault tolerant,

materializations may be lost. A materialization is considered lost when any of its

components has failed. If all of the materializations of a document are lost, then the

document is considered lost.

To create a materialization, first we must ensure that the necessary components

exist in the store. Then we create a record that links together the components as

a materialization. For example, say we want to create a document materialization

that requires the bits in file “doc.ps,” which are located in disk2 in site1 and re-

quires a postscript interpreter. Any components that do not exist already (e.g., the

file doc.ps) are created. In some cases, “creating” a component may require a phys-

ical action, e.g., adding a new printer or disk to the store. Once the components

exist, a metadata record containing references to the components is created (e.g.,

〈site1, doc.ps, disk2, postscript〉). This record serves as the identifier for the materi-

alization.

A document metadata record includes the records for all available materializations.

If this metadata record is corrupted or lost, the document will not be accessible.

Therefore, the record must be one of the required components for any materialization.

2.3.3 Architecture of the Archival System

The AS provides fault tolerance by managing multiple materializations for each doc-

ument. The AS monitors these materializations, and when a failure is detected,

attempts to repair them. The AS can improve fault tolerance further by taking pre-

ventive actions to avoid failures. The AS provides the user with the ability to create

and retrieve archival documents. It also provides miscellaneous services such as in-

dexing, security, and document retirement, among others. When a user requests a

document, the AS uses its metadata to find all the available materializations of that

document, selects one and returns it to the user. In this section, we describe the six

modules that make up an AS (see Figure 2.3).
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The Archival Document Creation module (ADC) generates new documents, im-

plementing policies on the number and types of materializations that are needed. For

example, say an administrator has decided that documents should be materialized as

illustrated by Document 1 in Figure 2.4. Then, for each new document, the ADC

creates (on the data store) the appropriate “File 1” and “File 2,” the document meta-

data record, and checks that the other components exist. The main objective of this

chapter is to provide a framework that allows a system administrator to choose the

best materialization policies to achieve a desired level of reliability.

The Archival Document Access module (ADA) services requests for documents.

Basically, the module translates the request for a document into a request for the

appropriate components of one of the document materializations.

The Failure detection module (FD) scans the store looking for damaged or lost

materializations. When a damaged materialization is found, the failure detection

module informs the Damage Repair module (described below) about the problem.

The Damage Repair module (DR) attempts to repair damaged documents. There

are many strategies to repair a damaged document, as discussed in Section 2.2.3. The

input of the DR module is a signal from the FD module.

The Failure Prevention module (FP) scans the store and takes preventive measures

so materializations are less likely to be damaged. For example, the FP module may

copy components that are stored on a disk that is close to the end of its expected life,

into a newer disk.

Finally, the Other Services module (OS) provides miscellaneous services such as

indexing, security, and document retirement. Retiring a document involves removing

from the store any components that are no longer needed, even by other materializa-

tions.

2.4 Failure and Recovery Modeling

In this section, we will model the failure and recovery characteristics of an AR, based

on the architecture presented in the previous section. First, we will explore how to



26 CHAPTER 2. EVALUATING THE RELIABILITY OF AN AR

model a non-fault-tolerant store, and then the archival system (AS). Later, we will

combine these two models into an archival document model.

2.4.1 Modeling a Non-Fault-Tolerance Store

To model the failure characteristics of a store, we start with an abstract representation

of materializations and components. We model a materialization as an n-tuple 〈matid,

docid, comp1, ...compn〉; where matid is the materialization identifier, docid is the

document identifier, and comp1...compn are the components required to provide the

required document access. The identifiers matid and docid together form a unique id

for the materialization. For example: 〈M1, TR1233, doc.ps, site1, disk2, postscript〉
means that the materialization M1 contains the document identified by TR1233 that

needs the bits in file doc.ps, disk2, site1 and the postscript interpreter in order to

be readable. A document can have more than one materialization. For example,

Technical Report 1233 can also have the materialization 〈M2, TR1233, doc.ps, site1,

disk3, postscript〉, which would be a copy of M1 but on a different disk (disk3).

We model components by a tuple 〈componentid, type〉, where componentid is a

unique identifier for the component instance and type is the class (e.g., file, disk,

interpreter) to which the instance belongs.

To further model components, we need to describe:

• How many component instances and types are present in the system: that is,

how many disks, formats, etc., are available.

• Failure distribution of each component type. Many components have two dif-

ferent failure distributions, one during archival and another during access. For

example, a tape is more likely to fail when it is being manipulated and mounted

on a reader than when it is stored. Therefore, each component will have two

failure distributions: during archival (i.e., time to next failure when the com-

ponent is not used) and during access. For some components, such as disks

or sites, the access and archival distributions will be the same; but for other

components, such as tapes or diskettes, these distributions can be very different.
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• Time distribution for performing a component check. This distribution de-

scribes how long it takes to discover a failure (or to determine that a component

is good), from the time the check process starts. For example, consider checking

a tape. This may involve getting the tape from the shelf, mounting the tape,

and scanning the tape for errors.

• Time distribution for repairing a component failure. This distribution describes

how long it takes to repair a component. This distribution may be deterministic

(if the component can be repaired in a fixed amount of time). Repair time may

be “infinite” if the component cannot be fixed.

In addition, there is an important interdependency between components. Specif-

ically, the failure of one component may cause the failure of another component. For

example, if a site fails (e.g., because it was destroyed by a fire), then all the disks at

the site will also fail. As pointed out earlier, we are only taking into account per-

manent failures; transient failures (e.g., the site was temporarily disconnected from

the network) are ignored. This failure dependency is captured by a directed graph.

For example, an arrow between “Site A” and “Disk 1” in the interdependency graph

means that if “Site A” fails, then “Disk 1” will also fail.

We close this subsection with two comments. First, we do not claim that the

model presented for the store is complete. For instance, we have not included policies

for handling concurrent access. There is always a tradeoff between complexity of the

model and our ability to analyze it. We believe that our model strikes a good balance

in this respect, and captures the essential features of a store. Second, the reliability

predictions we make are only valid for the current configuration of the repository.

Over time, the repository will change (e.g., as new devices are introduced), so we

may need to change our repository model. As the model changes, we may need to

revisit our predictions.

2.4.2 Modeling an Archival System

In this section, we describe how to model the behavior of the modules of the archival

system. We do not include failure distributions for these modules as we are assuming
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that the AS itself does not fail. We recognize that this is a strong assumption, but in

this chapter, we have chosen to concentrate on the failure of components, instead of on

the failure of the system that provides fault-tolerance. How to develop error-tolerant

robust software design has been studied in [63].

In general, we model the input of the modules with probability distribution func-

tions and their behavior by algorithms. For example, consider the document creation

(ADC) module. Its input distributions tell us how frequently requests for document

creation arrive, how many materializations each new document will have, and which

components will be selected to participate in a given materialization. The algorithms

for the failure detection (FD) module spell out what policies are implemented, e.g.,

if all components are checked on a regular basis or not.

The probability distributions that drive the model can be obtained in different

ways. If we have data from a real system, we can use the data directly (trace driven),

or we can define an empirical distribution, or we can fit the data onto a theoretical

distribution [4]. If we do not have real data, we need to choose a theoretical distribu-

tion that matches our intuition. A sensible distribution to choose (when requests are

generated independently) is a Poisson distribution for event inter-arrival times [12].

We summarize the model parameters in Figure 2.5. The figure is divided in three

parts. At the top are the parameters that describe the AR: the number of components

and their types, and the failure dependency graph. Then, we list all the distributions

needed for the model with the units being modeled in parenthesis. Finally, we list all

the policies and algorithms that must be defined to model the archival system.

2.4.3 Modeling Archival Documents

In this section, we combine the models for the data store and the AS, in order to

describe the life of an archival document. In Figure 2.6, we depict our model for the

life of an archival document. The life of a document starts when its materializations

are created by the ADC module and handed to the store. The creation of a document

may not be an instantaneous process. For example, if long-term survival is achieved

by keeping multiple copies, the document is not considered archived until all the
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• AR Description

– Number of components and types
– Failure dependency graph

• Distributions

– For each component type:
∗ Failure distribution during access (time)
∗ Failure distribution during archival (time)
∗ Failure detection distribution (time)
∗ Repair distribution (time)

– Document creation distribution (time)
– Document access distribution (time)
– Access duration distribution (time)
– Document selection distribution (document)

• Policies

– Document Creation policy
– Document to materializations policy
– Failure detection algorithm
– Damage Repair algorithm
– Failure prevention algorithm

Figure 2.5: Archival Repository Model Parameters

copies are generated. Once the ADC module has taken all the actions that ensure

the long-term survival of the document, then the document has full protection, and

we say that the document is in the Archived state.

When any of the document components fail (based on the distributions in Fig-

ure 2.5), the document is considered to be in the Damaged state and becomes tem-

porarily unprotected. For example, if we keep two copies of a document and one of

the copies is lost, then the document would be damaged. As explained earlier, the AS

will not know that a document is damaged until the FD module detects the failure.

When the failure is detected, the document goes to the Damage Detected state.

When damage to a document is detected (by the policies summarized in Fig-

ure 2.5), the AS starts actions to restore the document and, hopefully, return it to

the Archived state. For example, if the document is damaged because one of its copies
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Figure 2.6: Archival Document Model

was lost, the repository can replace the damaged copy by creating a fresh one from

one of the good copies. However, if the repair is not successful, then the document

may be Lost. This latter state is the one that we want to avoid in an archival system.

We also distinguish two additional states: Accessible and Retired. When a doc-

ument is in the Accessible state, it can be accessed (e.g., read, printed) by users,

which is not the case for the Archived state. For example, if some of the document’s

components are stored on a tape which is kept in a safe, we need to take the tape out

and mount it in a reading device to make it accessible. When the tape is stored, the

document is in the Archived state; when the tape is mounted, it is in the Accessible

state. As we discussed in the previous section, by making the document accessible,

in general, we are increasing the chances of damaging the document. Therefore,the

probability of transition 7 is, in general, greater than the probability of transition 5.

The Retired state allows users to mark the documents that are not needed any-

more. In this case, the document is retired from the archival system and the system

does not provide any survivability guarantees. It is important to note that retiring a

document may eventually result in removing all materializations from the store. This

action is different from taking a document “out of circulation,” in which case the doc-

ument is not longer available to regular users, but it is still preserved for historical

reasons.
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In the Archival Document Model, transitions between states are due to deliberate

actions taken by the AR or due to external events. An example of a deliberate action

is the creation of enough copies that lead to the transition between the Created state

and the Archived state. An example of an external event is the failure of a disk,

causing the transition of a document from Archived to Damaged. Most external

events have a probabilistic nature.

The archival document model presented contains only the main states for a doc-

ument. In some particular scenarios some of the states may merge or may not exist

at all. For example, in an on-line archival system, there may not be any difference

between the “Archived” and “Accessible” states. Similarly, depending on the actual

policies of the AR, some of the states can be expanded. For example, if a system

has a “Document to Materialization” policy that requires the creation of three copies

of the document, the Damaged state expands into six states, one for each possible

combination of one or two copies being lost. It is important to note that for analyzing

an archival system we do not need to expand the nodes unless we are interested in

the specific probability of being in those expanded nodes.

Also note that we have simplified our document model by assuming some tran-

sitions do not occur. For example, we do not show a transition directly from the

Archived state to the Lost state, as we assume that documents are always damaged

before they are lost. We also do not show a transition between the Damaged state

and the Archived state, as we assume that damage does not repair itself.

2.4.4 Example: An Archival System based on Tape Backups

Let us describe the archival document model in more detail by using a specific example

(Figure 2.8). This archival system saves documents on two tapes. The tapes are stored

in a controlled environment (i.e., a safe) to improve preservation. We summarize the

parameters for the model of this system in Figure 2.7.

The operation of the system starts with the ADC saving n documents on each of

the tapes. For simplicity in this example, we will assume that this operation always

succeeds. Let us assume that the time between access requests to the ADA module is
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• AR Description

– Initial collection: empty.
– Number of components and types: 2 tape drives
– Failure dependency graph: empty

• Distributions

– Tape Failure distribution during access: exponential with rate D
– Tape Failure distribution during archival: exponential with rate L
– Tape Failure Detection distribution : exponential with rate R
– Tape Repair distribution: uniform with probability 1.
– Document creation rate: n documents at startup, then no docu-

ments are created.
– Document access period: A
– Access duration period: S
– Document selection: uniform over the n documents.

• Policies

– Document Creation policy: write in both tapes.
– Document to Materialization: read from any working tape.
– Failure detection algorithm: complete scan of both tapes taking a

negligible amount of time.
– Damage Repair algorithm: discard bad tape and replace with new

copy taking a negligible amount of time.
– Failure prevention algorithm: none

Figure 2.7: A model for a dual tape system

distributed exponential with rate A. The duration of a successful tape access is also

exponential with a rate 1− S. The FD module scans the tapes and finds all failures

at a rate R. The DR module can repair all failures as long as one of the tapes is

working and the repair is done instantaneously. Therefore, the system will lose the

documents if both tapes fail in between the scans of the FD module. The system

does not have an FP nor an OS module.

Additionally, let us assume that while the tapes are in a safe environment, they

become unreadable under an exponential distribution with rate L. When the tapes

are being read, the rate of damage increases to D (D > L).

Using the information from the archival model, we can model the life of a document
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Figure 2.8: A Dual-tape Archival System

as it is presented in Figure 2.9. The document is considered Archived after we finish

copying the document onto the tapes and the tapes are in a safe place. As this process

always succeeds, the transition to Archived happens with probability 1.

Given that we have two tapes, then the distribution for transition from Archived

to Damaged will be exponential with rate 2L (if we assume independent failures).

When making the document accessible, we increase the rate of failure of a tape to

D, thus, the rate of the transition from Accessible to Damaged will be D + L, D for

the mounted tape and L for the tape that stays in storage. Finally, when a tape is

damaged, the system will attempt to recover the tape by using the other tape. We

are assuming that this recovery will succeed with probability R, in which case we will

return to the Archived state. However, if while in a Damaged state, the second tape

becomes unreadable (this will happen with probability L), then the document would

be lost. The rate of access to the document is A (not A/n, where n is the number of

documents); this is because when accessing a document, we are actually accessing all

documents on the tape.
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Analyzing the Dual-tape Archival System

Our goal is to find how long it would take for the Dual-tape Archival System to lose

documents. In other words, we want to find the mean time to failure (MTTF) of

the system. The computation of the MTTF of an AR can be done in two ways:

we can attempt to compute it analytically, or we can infer it statistically by sim-

ulating the system. The analytical approach consist in modeling the problem as a

Markov Decision Process (MDP) and finding a solution for it. However, MDPs make

strong assumptions that may not be true in archival systems and the computational

complexity of finding a solution for them is high. The basic assumption of Markov

models is that the probability of a given state transition depends only on the current

state [74]. Moreover, the amount of time already spent in a state does not influence

either the probability distribution of the next state or the probability distribution

of remaining time in the same state before the next transition. This assumption

prevents us from using realistic failure distributions. In addition, in [62] the compu-

tational complexity of solving MDPs has proven to be P-complete. This means that,

although the problem is solvable in polynomial time, if an efficient parallel algorithm
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were available, then all problems in P would be solvable efficiently in parallel (which

is considered an unlikely outcome at the moment). In practice, this result means that

given the high order of the polynomials describing the complexity of solving a MDP,

it would take months to solve a general MDP with a million node/transitions. In

the next section, to overcome the limitations of solving MDPs, we will introduce a

Monte-Carlo simulation tool that allows the use of general failure distributions and

is able to find the MTTF of complex archival systems in a short time.

The Dual-tape Archival System is simple enough that it can be modeled using a

Markov Chain and the Mean-Time to failure can be computed exactly:

MTTF =
S ·R + D ·R + D · L + 2L2 + 4L ·R + 3L · S + 2A · L + 2A ·R

2L3 + 2L2D + A · L2 + A ·D · L + 2L2S
(2.1)

Formal modeling allows us to take precise allocation decisions. For example, if we

use the parameters in Figure 2.10, then the MTTF of the system will be 9,316 days

(or about 25 years). We can also use this result to make resource allocation decisions.

Let us suppose that we want to improve the MTTF to 100 years and we can do so by

improving the rate of detection and repair of damaged media (i.e., change the value

of R). In this case, we can compute the needed repair frequency to achieve a MTTF

of 100 years: 13 days. These 13 days include the sum of the frequency of checking

the tapes plus the number of days that it takes to replace a defective tape with a new

copy. Specifically, if it takes 1 day to create a new tape, then we need to check all

the tapes every 12 days.

The computation of Equation 2.1 is complex, even though we are not considering

software errors, sites failure, etc. When considering all those factors, obtaining a

closed result is very difficult, and in some cases, impossible. In the next section we

will introduce a simulation tool, ArchSim, that will be able to handle more complex

cases.
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Mean-Time to failure (days)
Parameter value
Tape in stable storage (1/L) 1000
Tape when reading (1/D) 250

Access Rates (days)
Parameter value
Access frequency (1/A) 20
Access duration (1/S) 2

Failure detection and
Repair Rate (avg. days)
Parameter value
Tape (1/R) 60

Figure 2.10: Parameter values

2.5 ArchSim: A Simulation Tool for

Archival Repositories

To evaluate a possible AR configuration, we need to predict how well it protects doc-

uments. This prediction can sometimes be done analytically, but as the AR gets more

complex, an analytical solution is impractical (and sometimes impossible). Instead,

we rely on a specialized simulation engine for archival repositories: ArchSim. We

start this section by discussing the specific challenges confronted when simulating an

AR. Then we describe ArchSim and its libraries.

2.5.1 Challenges in Simulating an Archival Repository

ArchSim builds upon existing simulation techniques for fault-tolerant systems. How-

ever, the unique characteristics of archival repositories make their simulation chal-

lenging:

• Time Span: The life of an archival system is measured in hundreds, perhaps

thousands of years. This means that simulation runs will be extremely long, so

special precautions must be taken to make the simulation very efficient. Fur-

thermore, given these long periods, failure distributions must take into account

component “wear-out.” (A component is more likely to fail after 50 years than

when it is new.) Simple failure distributions (e.g., exponentially distributed
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time between failures) are frequently used in fault-tolerant studies, but they

cannot be used here since they do not capture wear-out.

• Repairs: In an archival system we cannot in general assume that damaged com-

ponents can always be replaced by new identical components (another common

assumption when studying fault-tolerant systems). For example, after 100 years,

it may be impossible or undesirable to replace a disk with one having the same

failure characteristics.

• Component models: Component models are fairly rich, compounding the num-

ber of states that must be considered. For instance, as we have discussed, a file

is not simply correct or corrupted. Instead, it can be corrupted but the error

undetected, it can be correct but not accessible for reads, and so on. The failure

models in each of these states may be different; e.g., a file is more likely to be

lost when being read.

• Sources of failures: A document can be lost for many reasons; e.g., a disk fails

or a format becomes obsolete. Each of these failures has very different models

and probability distributions. The approach of finding the “weak link” and

assuming that all other factors can be ignored is not appropriate for ARs.

• Number of Components: An AR needs to deal with a large number of com-

ponents and materializations. The challenge of simulating a large number of

objects has been studied extensively [29, 59] and ArchSim uses those results.

2.5.2 The Simulation Engine: ArchSim

ArchSim receives as input an AR model, a stop condition (stop when the first doc-

ument is lost or when all documents are lost) and a simulation time unit (minutes,

hours, days, etc.). ArchSim outputs the mean time to failure (mean time to stop

condition), plus a confidence interval for this time. We are currently considering

other output metrics, e.g., the fraction of the documents that are available after some

fixed amount of time. However, these other metrics are not used in our case study

(Section 2.6).
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To define the AR model, each distribution and policy is implemented as a Java

object, so they can be as general as necessary. For example, for component repair,

the corresponding Java module can simply use a probability distribution (perhaps

one of the library functions described below) to generate the expected repair time.

However, that module can easily be replaced by one that first decides if the com-

ponent can be repaired (using one probability distribution), and then for each case

generates a completion time (when the component is repaired or the repair is declared

unsuccessful).

2.5.3 Library of Failure Distributions

ArchSim makes available a library of pre-defined failure distributions that can be used

to describe AR components. The distributions in the library are: deterministic, uni-

form, exponential, infant mortality, bathtub, and historical survival. To illustrate, in

Figure 2.11(a)-(e), we sketch generic versions of these probability distributions. (The

area under these curves, from time 0 to t, represents the probability the component

will fail by time t.)

1. Deterministic Model (graph not shown): This is a deterministic model in which

the event happens (with probability one) at a fixed time. It is useful for describ-

ing deterministic events such as the start of a failure detection process. The

mass function of this distribution is:

p(t) =

{
1 if t = t0;

0 otherwise.

where t0 is the time when the event will happen.

2. Uniform Model (Figure 2.11a): This is a very simple model based on a uniform

distribution. Uniform distributions are convenient, as they are easy to generate

and analyze. The density function of a uniform distribution is:

f(t) =

{
1

t1−t0
if t ∈ [t0, t1];

0 otherwise.
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where [t0, t1] is the time interval where the failure may happen.

3. Exponential model (Figure 2.11b): This model assumes that the probability of

failure at any single point in time is constant (i.e., the model is memoryless). In

many fault-tolerance systems, exponential distributions are used instead of more

complex distributions (described next) under the assumption that components

are checked before installation and that the life of the system is much shorter

than the life of the components. However, in an archival system, these assump-

tions are not always true. The density function of the exponential distribution

is:

f(t) =

{
1
β
e−t/β if t ≥ 0;

0 otherwise.

where β is the mean (expected time to failure) of the distribution.

4. Infant Mortality model (Figure 2.11c): This model is good for describing fail-

ures due to system or human errors. At first, when the document has been

recently created, the probability is high (as there could be errors in its creation

and/or initial storage); then the probability drops sharply and remains fairly

constant during the rest of the life of the document. The density function of

this distribution can be obtained by using a Weibull distribution in the infant

mortality phase and an exponential distribution in the constant phase:

f(t) =


αβ−αtα−1e(−t/β)α

if t ∈ [0, t1);
1

(β/t1)αt1
e−(t−t1)/(β/t1)αt1 if t ∈ [t1,∞);

0 otherwise.

where [0, t1) is the infant mortality period, [t1,∞) is the constant period, α

(0 < α < 1) is the shape parameter (values closer to zero generate higher rates

of early failures), and β (β > 0) is a scale parameter used to adjust the mean

of the distribution during the infant mortality phase.
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5. Bathtub model (Figure 2.11d): This probability failure function is considered

typical of electronic devices. In the bathtub distribution, the probability of

failure early in the component’s life (infant mortality phase) and late in its life

(wear-out phase) are higher than during the middle years. The density function

of this distribution can be obtained by using a Weibull distribution in the infant

mortality phase, an exponential distribution in the constant phase, and another

Weibull distribution in the wear-out phase:

f(t) =


αβ−αtα−1e(−t/β)α

if t ∈ [0, t1);
1
γ
e−(t−t1)/γ if t ∈ [t1, t2];

δζ−δ(t− t2)
δ−1e(−(t−t2)/ζ)δ

if t ∈ (t2,∞);

0 otherwise.

where [0, t1) is the infant mortality period, [t1, t2] is the constant phase, (t2,∞)

is the wear-out phase, α (0 < α < 1) is the shape parameter for the infant

mortality phase, β (β > 0) is a scale parameter used to adjust the mean of the

distribution during the infant mortality phase, γ is the mean of the constant

phase, δ (δ ≥ 1) is the shape parameter for the wear-out phase, ζ (ζ > 0)

is a scale parameter used to adjust the mean of the distribution during the

wear-out phase. The constants in the distribution must be chosen such as:

e−(t1/β)α
+ e−t2/γ = e−t1/γ + e−(t2/ζ)δ

6. Historical survival model (Figure 2.11e): This model attempts to describe the

life of a published resource. The model is based on the idea that if a resource

survives after a long period, it becomes of “historical significance,” and its

chance of continual survival increases. Although there have not been studies

modeling the obsolescence of formats, we theorize that this function is a good

choice for modeling the obsolescence of a format interpreter. When a format

is adopted and retained for a long time (we are assuming here that we are

adopting a “commercial” format), the probability of not being able to interpret

the format is low. As the format ages, the probability of failure increases as

knowledge about the format starts disappearing until we reach the historical
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phase when the probability of losing the format, after having survived that far,

starts decreasing. This distribution is modeled using a Weibull distribution for

the adoption phase and another Weibull distribution for the historical phase.

f(t) =


αβ−αtα−1e(−t/β)α

if t ∈ [0, t1);

δζ−δ(t− t2)
δ−1e(−(t−t2)/ζ)δ

if t ∈ (t1,∞);

0 otherwise.

where [0, t1) is the adoption phase, (t2,∞) is the historical phase, α ≥ 1 is the

shape parameter for the adoption phase (the higher the parameter, the lower

the probability of losing the format), β > 0 is a scale parameter used to adjust

the mean of the distribution during the adoption phase, (0 < δ < 1) is the

shape parameter for the historical phase (the closest to zero, the “earlier” a

failure may happen), ζ (ζ > 0) is a scale parameter used to adjust the mean of

the distribution during the historical phase. The parameters in the distribution

must be chosen such as: (t1/β)α = (t2/ζ)δ
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2.5.4 ArchSim’s Implementation

ArchSim follows the structure of a traditional simulation tool. Each module of the AR

model can register future events in a timeline. For example, when a disk is created, the

simulation uses the disk failure distribution to compute when the disk will fail; then,

it registers the future failure event in the timeline. The simulation engine advances

time by calling the module that registered the first event. This module may change

the state of the repository and register more events in the timeline. After the module

returns, the simulation advances to the next event, in chronological order. The user

can choose between two end conditions for the simulation: the simulation can stop

after the first document is lost or after all the documents are lost.

ArchSim needs to be very flexible and efficient to meet the challenges of simu-

lating an archival repository. Flexibility is needed to model very different archival

conditions and implementations. Speed is needed to cope with many materializations,

components, and events. Additionally, each simulation needs to be run many times

in order to obtain narrow confidence intervals.

In an AR simulation, many events are inconsequential. For example, suppose that

the detection module schedules periodic detection events. If the detection event finds

a fault (i.e., there was a failure event before the detection event), then the module

starts a component repair; if no failure is detected, then the module does nothing. If a

repair module checks a component with MTTF of 20 years every 15 days, on average,

486 events (20 ∗ 365/15) will be fired and the repair module will return without

doing anything; only in event 487, when a failure of the component has occurred, will

the repair module perform an action. Given the large number of components and

modules that may be part of the model, this large number of inconsequential events

represents a significant overhead. To avoid this overhead and to improve efficiency,

modules are allowed to register conditional events in the timeline. These events will

only happen if some other event happens before them. By using conditional events,

we can condition the firing of the detection event only if a failure event on a specific

component happens before it. A conditional event is not registered directly in the

timeline. Instead, it is registered in an index that is part of its triggering event. For

example, if event B is conditional to the occurrence of event A, we will put B in the
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index of A. When a new event A is scheduled in the timeline, we look in the index

and find that B is conditional to it, so at that point we also schedule B.

To reduce the number of events further, ArchSim also modifies failure distri-

butions. For example, when modeling preventive maintenance, a large number of

“replace component” events are generated. We can eliminate all these events, by

modifying the failure distribution. Specifically, the original failure distribution is

used to generate the time of the next failure of the component. If this time is higher

than the prescribed preventive maintenance period, we ignore this time, and we gen-

erate a new failure time, again using the original distribution. We repeat this process

until the failure time is lower than the preventive maintenance period. The new dis-

tribution then returns the number of iterations minus one, times the PM period, plus

the last failure time.

Another challenge for ArchSim is how to deal with a large number of material-

izations and components. This is done by scheduling only the next failure for each

component type and associating a trigger with that event. When the failure event

happens, the trigger is activated. The trigger computes when the next failure of a

member of that component type will occur, and adds it to the timeline. Obviously,

this approach is only beneficial if we have many components of the same type, which

is a reasonable scenario for an AR. In the case in which we have N different distri-

butions for N components, this technique does not improve the simulation time, but

it does not increase it.

2.6 Case Study: MIT/Stanford TR Repository

In this section, we use ArchSim to answer some design questions for a hypothetical

MIT/Stanford Technical Report Archival Repository. The AR follows the Stanford

Archival Vault (SAV) design and implementation [17]. In this case study, MIT and

Stanford preserve their Computer Science Technical reports by replicating the reports

at both universities. In this case study we will have to make many assumptions. Our

goal here is not to make any specific predictions, but rather to illustrate the types of

evaluations that ArchSim can support, the types of decisions that must be made to
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Figure 2.12: MIT/Stanford CSTR Scenario

model an AR, and the types of comparisons than can be made to support rational

decisions among alternatives. In addition to this case study, we also used ArchSim to

evaluate the dual tape system presented in Section 2.4.4. The results from ArchSim

and the Markov chain analysis were consistent for the parameter values of Figure 2.10.

We assume that the collection has 200,000 documents and that each document

is stored in one or more of four available formats. The repository has two types of

components: storage devices (disks) and format interpreters. To ensure preservation,

the AR maintains four materializations of each technical report; two materializations

at Stanford and two at MIT. Materializations are created by choosing two formats

out of the four available formats. Two of the materializations will be in one of the

chosen format, while the other two will be in the other. Then, at each site, we place

two materializations that are in different formats on two different disks. Figure 2.12

illustrates the arrangement of the technical reports in this system.

Disks, formats, and sites have uniform failure distributions with parameters 1/φsto,
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1/φform, 1/φsite. As our base values, we are assuming φsto, φform, and φsite, the

mean time to failure (MTTF) for disks, formats and sites, to be 3, 20, and 45 years

respectively.

These values are our best guess for a typical archival system. We chose 3 years

as the disk MTTF, as this is the normal period under which a hard drive is under

manufacturer guarantee. We chose 20 years for format MTTF as we theorize that it

will take that long for a well-known format to be replaced by a new format and for

all displayers and transformers of the old format to be lost. We chose 45 years for

the site MTTF as we assign a 50% probability to the event of losing the Stanford site

due to a high intensity earthquake in the San Francisco Bay Area (which is predicted

to happen within a 45-year period).

The archival system checks for faults periodically. When a fault is detected in one

of the storage devices, the bad device is retired, and a new device is set online. Then,

the system regenerates the bad device by making a copy of the lost materializations

from the other site. Similarly, when a format becomes obsolete, a new format is

selected and a new set of materializations (transformed from a non-obsolete format) is

created in the new format. In addition, in case of site failure, the site is recreated from

the other site. If all sites, formats and devices that support all the materializations of

a technical report are lost, then the technical report is lost and the simulation stops.

Disks, formats, and sites are checked and repaired (if needed) every ρsto, ρform, and

ρsite days. As our base values, we are assuming ρsto, ρform, and ρsite to be 60, 60, and

7 days.

To justify these values, we need to describe what is involved in the detection and

repair of component failures. Detecting a failure in a disk involves scanning the whole

disk and checking for lost data. When we find lost data, we need to order a new disk

and then copy all the data that was in the damaged disk from other sources onto the

new disk. Assuming that the repair time is 60 days means that we need to dedicate

only 3% of the disk bandwidth to scan all materializations in order to detect failures.

We did not chose a quicker repair because the scanning overhead would be too high

in our opinion. For example, 25% of the disk bandwidth is required to detect failures

in 7 days.
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Parameter Symbol value
Number of disks nsto 100 per site
Number of formats nform 4
Number of documents numdoc 200,000
Mean Time to Disk Failure φsto 3 years
Mean Time to Format Failure φform 20 years
Mean Time to Site Failure φsite 45 years
Disk Failure Detection/Repair time ρsto 60 days
Format Failure Detection/Repair time ρform 60 days
Site Failure Detection/Repair time ρsite 7 days

Figure 2.13: Base values

For formats, the detection/repair times imply that we are able to realize that a

format is obsolete and that we can create a new copy of the document from a non-

obsolete format within a 60 day period. In the case of site failures, we assume that

the detection/repair time for the site is much lower than for formats and disks. The

detection itself should be rather fast in this case (the entire site is down), and the 7

days could be the time it takes to find a backup site to take over.

In this case study, we are assuming that failures are total. This is, we cannot

partially repair a component and salvage some of the materializations. The failure

distribution during access will be assumed to be the same as the failure distribution

during archival. The simulation parameters are summarized in Appendix A and the

base values for our simulation are in Figure 2.13.

In our first experiment, we evaluate the effect of the failure MTTF and repair times

of storage devices on the system MTTF. In Figure 2.14, we show the system MTTF

for different disk MTTFs, given a detection/repair time of 60 days. To single out the

influence of storage device failures, we are assuming in this experiment that formats

and sites never fail. The dotted lines in the figure represent the 99% confidence

interval for the simulation, while the solid line is the average of all the simulation

runs. As expected, the system MTTF increases when the disk MTTF increases

(when the disk failure rate decreases). The exponential shape of the curve is the

result of constant repair time. As we keep increasing the disk MTTF, it is much
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Figure 2.14: MTTF vs. φsto with ρsto of 60 days

more improbable that another device will also fail before 60 days have passed. This

graph allows us to select a good storage device for a target system MTTF. If the

library targets a 10-year MTTF, then a disk with a failure MTTF of 3 years will

suffice. However, if the library requires a MTTF of 100 years, then we will need

disks with a MTTF of about 6 years. Most manufacturers guarantee their disks for

three years and very few guarantee them beyond five years. Therefore, a 6-year disk

MTTF requirement will be hard (or very expensive) to meet. Nevertheless, we can

still achieve our target system MTTF by changing other parameters in our system,

as we will see in the next experiment.

We now evaluate the sensitivity of the system MTTF to the repair time (ρsto).

In Figure 2.15, we show the MTTF of the AR for different disk MTTF (φsto) values,

and for different expected detection/repair times. (The graph has a logarithmic scale.

Confidence intervals are not shown to avoid clutter.) First, let us concentrate on the

curve for a φsto of 3 years. As expected, the MTTF of the system decreases when
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the ρsto of the storage devices increases. However, the shape of the curve is more

interesting. At low detection and repair times, there is a high positive impact on the

MTTF of the system. However, as we increase the repair times, the system MTTF

drops sharply. Interestingly, for a repair time greater than 120 days, about 1/9 of the

MTTF of the storage device, the effect on the system MTTF of the detection/repair

module is small. Thus, the detection and repair times must be much lower than the

storage device failure MTTF to have a significant effect on the MTTF of the Archival

System.

What is the optimal solution for a given MTTF with respect to disk MTTF repair

times? The answer depends on the cost assigned to those two factors. By looking at

all the curves of Figure 2.15, we can observe that we can achieve similar MTTF by

using better media or by reducing the detection/repair times. For instance, a system

that uses a storage device with φsto of 5 years (i.e., a low quality storage device) and
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has a detection/repair time of 30 days, is as good as a system that uses a high quality

storage device with φsto of 20 years, but is only checked and repaired every 360 days.

The decision of which alternative to choose will depend on the cost of the storage

device versus the cost of more frequent detections.
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Figure 2.16: MTTF φform=20 years, ρsto=ρform=60 days

We now expand our experiments by allowing formats to fail. In Figure 2.16 we

show system MTTF as a function of φsto when formats can fail. We fix ρsto at 60

days, and now formats can fail with φform = 20 years. To avoid introducing addi-

tional factors in the analysis, we assume site failures still cannot happen. Format

failures are detected and repaired with ρform = 60 days. For comparison purposes,

we have included in Figure 2.16, the results presented in Figure 2.14. The impor-

tant conclusion that we can derive from the figure is that in an archival repository

we cannot focus on single component types. It is surprising that even though the

format MTTF is much larger than the disk’s MTTF, the failure of formats still has
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a significant impact. This is because a document is lost if there is a disk failure or

a format failure. The result is that we are taking the “worst” of those two failures,

resulting in a system with a low MTTF. The result of this experiment shows that

we need a comprehensive model, like the one proposed in this chapter, to realize the

interactions between the components and their effects on system MTTF.

Our model can be used to explore other possibilities that may improve reliability.

For example, we now consider what happens if we are able to increase the number

of copies maintained in the sites from two to three. In Figure 2.17, we maintain the

same parameters at the same base values, but now each site has three copies in three

different formats. In the figure, we can see that by increasing the number of copies

to three, the MTTF increases from 34 years to 2101 when φsto is equal to 3 years.

Although increasing the number of copies to three will undoubtedly increase the cost

(as we need an additional 33% disk space and the need to handle an extra format),

we have achieved an important improvement in the MTTF of the system.
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As we stated earlier, a comprehensive model is important to get an accurate

picture of the reliability of the system. In the next experiment, we use our system

to explore a different, more complex failure distribution for storage devices. In this

new distribution, we want to include the issue of “infant mortality.” We will use a

failure distribution with a MTTF between 44 and 285 days in the first 30 days, and

5 years afterwards. In this experiment we will assume that formats cannot fail. All

other assumptions and repair procedures of the previous experiments are maintained

(see Figure 2.13). In Figure 2.19 we show the system MTTF at given percentages

of storage devices that fail in the first 30 days. For example, with an early MTTF

of 285 days, 10% of the devices will fail within 30 days. With a MTTF of 135 days,

20% will fail. We can convert from one measure to the other by using the formula

(conversions shown in Figure 2.18): 1
MTTF

= 1− 30
√

1− pct

Percentage failed devices MTTF first 30 days (days)

0% N/A
10% 285
20% 135
30% 85
40% 59
50% 44

Figure 2.18: Conversion between %failed devices and MTTF

As expected, the higher the infant mortality, the lower the MTTF of the system.

At a 0% infant mortality, the system MTTF was 65 years, dropping to 48 years

when the infant mortality was 10% and dropping to only 11 years at the 50% infant

mortality level. Given this, when using components that suffer from infant mortality,

a way to increase the MTTF of the system is for the failure detection module to check

new components much more often than older components.

We now explore the issue of the aging of storage devices. With aging, a storage

device will have a lower MTTF at the end of its life. For example, a disk may have

a 5 year MTTF during its initial life and a MTTF of 2 years when it reaches its

“aging” phase. In this experiment we will assume that formats cannot fail. All other
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Figure 2.19: MTTF with Infant Mortality

assumptions and repair procedures of the previous experiments are maintained (see

Figure 2.13). We evaluated the MTTF of the system for different points when aging

starts (see Figure 2.20). As expected, the sooner aging starts, the lower the MTTF

of the system. If aging never occurs, the MTTF of the system is 65 years. If aging

starts after 1 year, the system MTTF is 17 years, increasing to 42 years when aging

starts after 5 years. Given this, when using components that suffer from aging, a way

to increase the MTTF of the system is for the failure detection module to check old

components much more often than newer components. Moreover, we should consider

replacing old components with newer ones before the old components fail.

As a final experiment, we will evaluate the impact of Preventive Maintenance (PM)

on a system with aging disks. Specifically, we will replace old disks with new ones

before the old disks are expected to fail. This is done by copying (instantaneously)

all documents from the old disk onto a new disk, and then removing the old disk. In

this experiment, we are assuming that disks do not have infant mortality and that
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Figure 2.20: System MTTF with Aging and ρsto of 60 days

disks have a 5 year MTTF during their initial life and a MTTF of 2 years when they

reach their “aging” phase. Figure 2.21 shows five PM schedules for disks that age at

different points. From the figure we can see that the most efficient PM schedule is

one that matches the start of the aging period of the disk. For example, when we use

a 10-year PM plan a system with disks that age after 5 years, will have a MTTF of 42

years. When we never perform PM, the system MTTF does not increase significantly.

However, when we use a 5-year PM plan, the MTTF of the system increases to 63

years. If we keep increasing the frequency of the PM plan, the MTTF does not

improve much more.



54 CHAPTER 2. EVALUATING THE RELIABILITY OF AN AR

0

10

20

30

40

50

60

70

80

1 3 5 10 Never
Start of Aging (years)

M
TT

F 
(y

ea
rs

)

1
3
5
10
Never

Preventive 
Maintenance 

Period (years)

Figure 2.21: System MTTF with PM and Aging

2.7 Discussion

In this chapter, we have studied the archival problem. We studied the different options

for recovery and preventive maintenance, developing a comprehensive model for an

AR. We described a powerful simulation tool, ArchSim, for evaluating ARs and the

available archival strategies. We described how ArchSim can efficiently perform large

simulations with many components and very long durations. We demonstrated the

use of ArchSim in a case study for a hypothetical Technical Report repository operated

by Stanford and MIT. We considered options such as disks with different reliability,

number of copies, format failure handling, and preventive maintenance. We believe

ArchSim can help librarians and computer scientists make rational decisions about

preservation, and help achieve better archival repositories.
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3.1 Overview

Two important factors must be considered in AR design: the level of assurance (e.g.,

on average a document will not be lost for 1000 years) and the cost (e.g., an initial

investment of 1 million dollars and yearly expenses of 100 thousand dollars). In

Chapter 2, we studied how to determine the level of assurance of a given system. In

this chapter, we expand on that to predict the cost of an AR.

Predicting the cost of an AR is a difficult task. First, we need to estimate the cost

of each “event” such as AR creation, the failure and repair of a disk, etc. For many

of these events, we may also have to predict when they will happen. For example,

since we do not know when a disk will fail, we cannot deterministically predict when

and how often we will pay for its repair. Second, we may not know future costs

for certain, so we may have to represent them with probability distributions (e.g.,

the price of a disk may be between $100 and $150). As we will see in this chapter,

deriving cost estimates and likelihoods for a given AR requires a lot of “guess work.”

However, the alternative of ignoring costs altogether can easily lead to systems that

are overdesigned and overpriced, or that do not meet reliability expectations.

In this chapter we show how AR costs can be modeled, albeit in a rough way,

so that rational decisions can be made. In particular, we present a complete design

framework for making cost-driven decisions about ARs, and an extension of ArchSim

that aids in the process. Our design framework is based on Decision Analysis (DA)

theory [35] and we believe that it is a good way of structuring the design of ARs. To

illustrate the framework, we use as a running example an extension of the case study

presented in Chapter 2.

The contributions of this chapter are:

• An in-depth study of the costs involved in an AR.

• A comprehensive design framework for making AR cost decisions.

• An extended version of our simulation tool that can predict the reliability and

the cost of an AR.

• A demonstration of the framework in an extended case study.
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3.2 AR Costs

We can see the life of an AR as a sequence of events such as the failure of a disk, user

access to a document, and making a copy of a document. A cost event is an event that

has an economic impact. The definition of what has an economic impact will vary

from organization to organization. For example, an organization may define economic

impact as anything that has an impact on the accounting books (e.g., expenses and

depreciation of capital equipment). Another organization may extend the definition

to include expenses incurred by the users (e.g., expenses because of unavailability

of the system). Cost events may or may not be triggered by a physical event. For

example, an organization may buy a maintenance contract for disks under which an

annual fee is paid in exchange for free repairs of all disks that may fail during the

year. In this case, the failure of a disk (a physical event) will not have any economic

impact (and thus it is not a cost event), while the annual payment for the maintenance

contract (which is not an AR physical event) will be a cost event.

How can we compare the total cost of two ARs? Ideally, we would like to assign

a monetary value (e.g., dollars) to each event in the sequence, and then, aggregate

those costs into a single value. Having done that, we can simply choose the system

with the lowest cost. If we know the sequence of costs events and each future cost can

be deterministically computed (e.g., disk prices will decrease by 5% annually from

current prices), this is a feasible task. In this case, we compute the monetary value

of each event and we aggregate them by computing the average annual system cost,

or ASC (e.g., the AR will cost $100,000 annually).

However, as we explained in Section 2.1, we may not know the exact sequence

of cost events. In addition, we may not know deterministically future costs and we

may have to represent costs as probability distributions. In this case, the system is

characterized by a probability distribution of ASCs (e.g., with probability 0.3, the

annual cost will be $100,000; with probability 0.7 it will be $150,000). Although in

simple cases the ASC distribution can be found analytically, in general, we have to

rely on simulations to obtain an approximation of the distribution.

With probabilistic ASCs, choosing the best AR is not straightforward. The general
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problem of choosing between two probability distributions of costs has been studied

in [50]. In this chapter, we use the simplest way of selecting the best of two cost

distributions, namely, we will choose the one with the lowest mean (average). Given

this, throughout the chapter, we will frequently talk about the mean annual system

cost (MASC) as a representative indicator for the distribution of the average annual

system cost.

3.2.1 A Taxonomy of Cost Sources

In this section, we classify the cost sources in an AR. Our goal is to understand

those sources, so we can use them as building blocks for cost events. The problem of

classifying cost sources for computer systems has been studied in [26], but we are not

aware of any studies of the specific case of ARs. The most common cost sources in

an AR can be broken down into the following categories:

Hardware and Software: This category includes all the expenses (including

lease fees) for servers, clients, disks, software, the network, and peripherals. Although,

this is the most obvious source of cost for a computer system, it only represents about

20% of the total cost for the system [26]. Usually, it is easy to estimate the cost of the

initial hardware and software, as we can use market prices. However, for replacement

hardware and software, it is a more complicated process as we need to predict future

prices. Moreover, this prediction is often obtained in the form of a probability distri-

bution, based on current trends, as well as possible future technological developments.

For example, when predicting disk costs ten years from now, we may conclude that

with 60% probability a terabyte will cost $10 or less, with 80% probability $15 or

less, and with 99% probability $50 or less.

Non-labor Operational costs: This category includes all the costs (other than

labor) necessary to maintain the AR operational. For example, these costs will include

the electricity consumed by the system, air conditioning, and physical space. As with

the Hardware-and-Software category, it is easy to estimate the initial cost of non-

labor operational costs. For future costs, the major challenge in estimating these

costs is trying to predict the future needs of the components of the AR. For example,
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technological improvements may reduce the need for physical space, but they may

increase the need for air conditioning.

Labor costs: This category includes all the human-related costs necessary for the

AR. In particular, this will include management (e.g., system administrator), support

(e.g., help desk), and development (e.g., application developers).

Information acquisition: Information is sometimes free (e.g., technical reports,

thesis), but in general, libraries need to pay for information (e.g., journals). This

payment may be a one-time fixed cost, periodic payments (subscriptions), or, more

infrequently, pay per use. In some context, we may choose to ignore this cost and

considered it “the cost of doing business” (i.e., the library will have to provide access

to information even if it does not have an AR). However, we should consider this

cost if the creation of the AR will change the way the library pays for information

(for example, moving from a paper-based library to a digital library with publishers

charging different amounts for paper journals than for digital journals).

Insurance: We define insurance as any agreement where an outside party takes

the risk of a specific failure in an AR component in exchange for a fixed payment. An

example of insurance is a maintenance contract where the library pays a fixed amount

to a company that replaces failed disks. Insurance is important not only because of

its direct cost, but also because it can reduce the variance of the AR cost. If we are

able to “insure” all uncertain events, then we will have a deterministic ASC.

Unavailability: If the system is not available, there may be an economic impact

on the organization. Unavailability may be caused by a system failure, but it can

also occur when system resources are diverted to maintenance or repair tasks. For

example, a user may be blocked because the system is checking for errors in the

storage device that holds the requested document. Similarly, the system may only

be able to handle a fraction of the normal users when it is migrating documents to a

new format.

Measuring the cost of unavailability is a difficult task. If users pay for access,

we may be able to assign a direct cost corresponding to lost income. If users do

not pay directly, we still may want to penalize the system for unavailability, lest we

end up with a design that disregards user needs. One way is to assume that users
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would access an alternate system (even if the content is not available elsewhere). We

could, for instance, assume that the alternate system is equivalent to our AR. Thus,

if it costs $500 per day to operate the AR, the cost of unavailability would be $500.

We could also consider a commercially available alternate system. For instance, an

average search on Dialog (SciSearch database) costs $6, so if we cannot satisfy 1500

requests while doing preventive maintenance, the additional cost would be $9,000.

Cost of losing a document: Even though our objective is to preserve all doc-

uments in the repository, in some circumstances one can put a price on document

loss. For example, an organization may choose between archiving certain documents

or recreating them. In this case, the cost of losing the document would be the cost

of recreating it. Of course, there are cases in which we cannot put a dollar value on

losing a document (e.g., the diary of a famous person), so we can use an arbitrarily

large cost.

3.2.2 A Taxonomy of Cost Events

In the previous section we studied cost sources. In this section, we use those sources

as building blocks for the most common AR cost events. Cost events can be broken

down into the following categories.

AR creation: Starting an AR involves a large number of expenses. Hardware and

software need to be bought, infrastructure needs to be put in place, new personnel

needs to be hired, and so on. For instance, the creation of an AR with 100 disks

would involve a server (about $5,000), the disks ($500 per disk for a total of $50,000),

installation costs (one consultant at $1,000), renting and furnishing office space ($800

for the realtor that finds the place and $2,000 for furniture and other necessary

improvements for the rented space), and loading of the documents (five days of work

supervised by a system administrator, about $1,200) for a total of about $60,000.

The AR creation cost can be amortized over time. Amortization can done by either

charging a fraction of the startup cost over fixed periods of time (in which case it

would be an operational cost) or over each usage of the system (in which case it would

be a document access cost).
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Document Access: When accessing a document, the AR may incur acquisition

costs or labor costs (e.g., the cost of the operator who retrieves and mounts a tape).

AR operation: The total operational cost of the AR would include the office

space taken by the repository, the necessary utilities (electricity, network, etc.), and

the cost of the people in charge of keeping the system running. For example, in San

Francisco, the average cost of office space is $380 per square meter per year, so if we

assume the repository occupies a small office of 8m2, the annual space cost would

be $3,040 per year. Reasonable estimates for utilities are $4,000 for electricity and

$3,000 for network connectivity. Finally a quarter-time system administrator and a

1/8th librarian would cost about $20,000 per year. This results in a total operational

cost of about $30,000 per year.

Failure Detection: To enhance reliability, an AR needs to periodically check

for failed components (e.g., corrupted tape). When performing failure detection, we

should not only take into account the cost of the detection itself (e.g., moving a tape

from storage, mounting the tape on the reader, checking the tape, and returning the

tape to storage), but also the cost of the unavailability that it may generate. In

Section 3.3.4 we will see a specific example of how to compute these costs.

Repairs: When the AR fails and needs to be repaired, cost events may be gen-

erated (if we do not have a maintenance contract). For example, when a hard drive

fails, we may need to buy a new hard drive (about $500), remove and install the new

one ($100 for the time of the technician), and restore the contents of the failed drive

onto the new disk ($200 for the network cost and the unavailability caused by the

transfer).

Preventive Maintenance: Before a component fails, we may want to transfer

the information to a new component. For example, if we know that tapes can survive

20 years, we may decide to copy old tapes onto new ones after 10 or 15 years. The cost

associated with a preventive maintenance event includes the cost of the new media,

the transfer of the information, and the possible unavailability that this task may

create in the AR.

Upgrades: Upgrades are similar to preventive maintenance, i.e., we transfer in-

formation from old components to new ones. However, the motivation and the cost
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implications of an upgrade are different. We perform upgrades to obtain some advan-

tage from modern technology. These advantages may go beyond improved reliability

(which is the reason for preventive maintenance) and may include reduced cost. For

example, when upgrading to modern hard drives, we may gain reduced operational

costs (e.g., if they require less administrator time, less power, or less physical space).

Therefore, after an upgrade, we need to reconsider all other costs in the system and

change the cost events appropriately.

3.3 Designing an AR

Our goal is not simply to evaluate a given AR, but instead to design an AR that

meets our cost and reliability targets. For instance, we need to decide how many

document copies to keep, what formats to store them in, how frequently to check for

errors, and so on, in order to attain some desired reliability and maximum cost. To

aid the design, we use a framework based on Decision Analysis [36]. We show our

design framework in Figure 3.1. The framework is a cycle where we first formulate

our objectives. Then, we identify the uncertainties (e.g., when a disk will fail). A

large number of uncertainties can make the system difficult to analyze, so we next

identify and eliminate the uncertainties that do not have a critical influence on the

overall performance of the system. Then, we assess the probability distribution of the

uncertainties and predict the performance of the AR design. Finally, we perform a

sensitivity analysis to appraise our design. If we find a problem with the recommended

design (for example, we discover that one of our initial assumptions is incorrect), then

we iterate over the cycle.

To illustrate the design process, we will use an extended version of the case study

presented in Chapter 2. In this case study, we design an AR of Stanford and MIT

technical reports with emphasis on cost implications. At each step, we will discuss the

assumptions or decisions made in this sample design. We will also present simulation

results for this case study to show the types of conclusions that can be reached.
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Figure 3.1: AR Design Cycle

3.3.1 Framing the problem

The first step is to clearly define the success criteria for the design. Typically, the

criteria will include the archival guarantees (MTTF) and the cost of the AR (MASC).

Possible goals can be: (i) Maximize the MTTF of an AR such that the MASC is less

than a given amount. (ii) Minimize the MASC of an AR for a minimum MTTF.

(iii) Maximize some combination of the MTTF and MASC. In other words, we want

to transform the MTTF and MASC to a common metric (let us say dollars) and

maximize its combination. For example, if documents can be recreated, the organi-

zation may be able to assign a dollar value to losing a document as we discussed in

Section 3.2.1.

In our case study, the goal will be to have a repository with a MTTF at least

equivalent to that of standard paper (100 years) with the minimum MASC possible.

A failure is defined as the loss of one or more documents.

When designing an AR, some decisions are made before starting the design process

(policies), others are delayed until the implementation of the system (tactics), while

the rest are the focus of the design (strategies). For example, in our case study we

assume that the AR will cover Stanford and MIT technical reports (a policy) and

that the decision on the specific brand of the hard drives that the AR will use can be



3.3. DESIGNING AN AR 65

deferred until implementation time (a tactic). It is important for the design team to

agree on which decisions are policies or tactics, as no time should be spent studying

them during the design process.

3.3.2 Identifying Uncertainties, Alternatives,

and Preferences

Uncertainties are probabilistic factors that affect the AR (e.g., the time when the

disk will fail). Despite their name, we might actually have some control over an

uncertainty. For instance, even though we do not know when a disk will fail, we may

be able to choose between disks with different MTTFs. When we control the value

of an uncertainty completely, we call it a variable. For example, if we assume that

disk prices will decrease exactly 5% per year (and we know the current price), then

the cost of a replacement disk becomes a variable.

Alternatives are the different designs that we have available. For example, in our

case study, we may consider:

• ARs with disks with MTTF of either 3, 5, 10, or 20 years.

• ARs with failure detection intervals of 30, 60, 120, or 720 days.

The combination of these different values results in 16 possible configurations that

we need to evaluate.

3.3.3 Modeling an AR

An important decision is the level of granularity in the model. If we have too little

granularity, then we will have complex uncertainties that are difficult to analyze.

If we have too much granularity, the number of variables will be high, making the

analysis of the model difficult and even impossible. For example, in our case study

we decide to use disks, sites, and formats as the lowest level of detail (in contrast to

choosing documents, files, or even bits). Thus, we only need to quantify how much

money disks, sites, and formats will cost and how they will affect MTTF. This is much



66 CHAPTER 3. A DESIGN METHODOLOGY FOR ARS

simpler than trying to find the MASC and MTTF of the AR as a whole (not enough

granularity), or the MASC and MTTF of every single file (too much granularity).

To model and evaluate a particular AR configuration, we propose an extension of

the model presented in the previous chapter. In particular, our extension adds cost

events and their associated cost distributions. Recall that our model of an AR has

two major elements: a non-fault-tolerance data store and an archival system (AS)

that ensures long-term survivability of the information. To model the store, we need

to define (see Chapter 2 for a detailed description of these items):

• How many component instances and types are present in the system: that is,

how many disks, formats, etc., are available.

• Time distributions for component failures.

• Time for performing a component check.

• Time for repairing a component failure.

• Failure interdependency graph.

To model the AS we need to define for each component not only the distribu-

tions that affect reliability (which were described in Chapter 2) but also their cost

distributions:

• Document Creation algorithms and their associated cost distributions.

• Document Access algorithms and their associated cost distributions.

• Failure Detection algorithms and their associated cost distributions.

• Damage Repair algorithms and their associated cost distributions.

• Failure Prevention policies and their associated cost distributions.

• Upgrade algorithms and their associated cost distributions.
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Figure 3.2 summarizes the AR model for our case study. The failure and cost

distributions for the model are described in the next subsections. Note that for

simplicity the model assumes no format or site failures. (Our methodology can of

course handle a more general model.)

3.3.4 Transforming Non-Critical Uncertainties

into Variables

We can simplify the AR analysis by considering as variables the uncertainties that

have little impact on MTTF and MASC. For example, if the distribution for disk

prices introduces little variation of the total cost, we might as well replace it with

its mean. Eliminating uncertainties can save substantial analysis and simulation

effort. We call uncertainties that have a large impact on MTTF or MASC the critical

uncertainties. The remaining ones are called non-critical uncertainties or, given that

we are fixing them, just variables. In this subsection we will see how can we identify

critical and non-critical uncertainties.

To determine the impact of an uncertainty, we need to find its distribution. Ob-

taining an exact probability distribution for each uncertainty may take a significant

effort with a limited payoff, so instead we approximate the distributions by using just

three values: low, base, and high which correspond to the distribution 10, 50, and

90 percentile. Finding the appropriate low, base, and high values for an uncertainty

is more an art than a science. Only experience and a good understanding of the AR

components allow one to make these predictions.

After approximating the distributions of the uncertainties, we assess their impact

by using a Tornado Diagram. A Tornado Diagram shows the system performance

(MTTF or MASC) for the low/base/high value of each uncertainty (while keeping all

other uncertainties at their base values). An example of a tornado diagram can be

found on Figure 3.3. We will explain this diagram in detail later in this section, but

for now, we can see that some uncertainties (such as the Disk Failure) impact MTTF

significantly while others (such as Failure Detection Cost) have little or no impact.

Returning to our case study, let us consider the case in which disks have a MTTF
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• AR Description

– Initial collection: 200,000 documents. No documents created after startup. Each
document, d, will have materializations:

∗ 〈d, MIT, diski〉,
∗ 〈d, MIT, diskk〉,
∗ 〈d, Stanford, diskx〉,
∗ 〈d, Stanford, disky〉.

Where MIT and Stanford are the two sites; and diski, diskk, diskx, and disky are
different storage devices.

– Number of components and types: 100 storage devices in each site, 2 sites.

– Failure dependency graph: site → disk, when the disk is in the given site.

• Policies

– Document Creation policy: for each document, two materializations are created, one
in each site.

– Document to Materialization: read from any materialization.

– Failure detection algorithm: complete scan of all disk. Site failure detection is instan-
taneous.

– Damage Repair algorithm: discard bad component and replace with new component
instantaneously.

– Failure prevention algorithm: none

– Upgrade policy: none

• Distributions (unknown for now)

– Disk Failure dist. during access (time)

– Disk Failure dist. during archival (time)

– Disk Failure Detection success dist. (probability)

– Disk Repair success dist. (probability)

– Disk Failure Detection interval dist(time)

– AR Creation Cost. (dollars)

– AR Operational cost dist. (dollars)

– Disk Failure Detection cost dist. (dollars)

– Disk Repair cost dist. (dollars)

Figure 3.2: Archival Repository Model Parameters
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Tornado Diagram (MTTF)
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Variable low base high
Disk MTTF during access (years) 20× 0.9 20 20× 1.2
Disk MTTF during archival (years) 20× 0.9 20 20× 1.2
Success of a Failure Detection (prob.) 1 1 1
Success of a Failure Repair (prob.) 1 1 1
Failure Detection Interval (days) 120× 1.5 120 120× 0.9
AR Creation Cost (dollars) 55000 60000 70000
AR Operational Cost (dollars/year) 200 300 400
Failure Detection Cost (dollars/run) 1000 + 1200 ∗ 6 1200 + 1500 ∗ 6 1400 + 1800 ∗ 6
Repair Cost (per replaced disk) 450 + 100 + 164 500 + 100 + 204 600 + 100 + 244

Figure 3.5: Base values

of 20 years and we scan the repository every 120 days. (In practice we would do a

similar evaluation for each of the other 15 alternatives discussed in Section 3.3.2).

First, we obtain a rough range for the values of the variables. These ranges are shown

in Figure 3.5. The choice of these values is highly subjective, but, nevertheless, we

will attempt to describe the rationale that an expert may have followed to reach these

values.

Disk failure during access and archival: For these two uncertainties, we choose to

have the same distributions, since disks do not fail significantly more when accessed.

We use as base value the MTTF advertised by the manufacturer (20 years). We

assume that there is little variation in MTTF, so we will assign a low value of 90%

of the advertised MTTF and a high value of 120% of the advertised MTTF.

Success of failure detection and repair: For these two uncertainties, we assume

that the probability of success is 1. In other words, we are assuming that there are

no hidden failures (i.e., if a disk is defective, we can always tell) and that all repairs

are successful (i.e., we can always replace a defective disk with a working one). Note

that the latter does not mean that we can always repair a document. It just means

that we are always able to install a new disk and to copy the contents of the failed

disk from alternative sources if it is available.

Failure Detection Interval: This uncertainty shows that the assignment of low,

base, and high values need not be symmetrical. For instance, we assigned a low value
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of 1.5 times the targeted mean time to detection (120 days), while we assigned a high

value of 0.9 times the detection time. In other words, it is more likely that detection

will be slower rather than faster.

AR Creation Cost: Using the rationale presented in Section 3.2.2, we estimate the

initial AR cost to be $60,000. To allow for error, we choose a low value of $55,000

and a high value of $70,000. We assume that this will be a one-time cost (i.e., no

amortization will be done over time).

Operational Cost of a Disk: As illustrated in Section 3.2.2, we use a total oper-

ational cost of about $30,000 per year with a low value of $20,000 and a high value

of $40,000 per year to allow for errors. This total operational cost divided by the

number of disks (100 per site) results in an operational cost per disk of $200 to $400.

Cost of the Disk Failure Detection Algorithm: This is probably the hardest uncer-

tainty to estimate. We divide the cost of the detection algorithm into two components.

The first component represents the direct cost of running the algorithm, while the

second component reflects the cost of service unavailability. The direct cost of the

failure detection algorithm includes the time required by the System Administrator

to start the scan and correct any problems with the scan (assuming these tasks are

not included in the administrator’s salary already). If we assume that failure detec-

tion involves 5 days of part-time work, the cost will be about $1,200 per run (see

Section 3.2.2).

To estimate the unavailability cost, we assume that users would use an alternate

commercial service. Using the costs of Section 3.2.2 for 1500 missed user requests,

we price unavailability at $9,000. Therefore, the total cost of running the failure

detection algorithm is about $10,200. To allow for error, we choose a low value of

$8,200 and a high value of $12,200 per run.

Cost of the Disk Repair: The repair cost is equal to the cost of adding a new disk

($450 to $600) plus the cost of removing the disk ($100) and a fixed amount for the

resources involved in copying the data from the alternate sources onto the new disk

(equal to twice the cost of running the detection algorithm on a single disk, that is,

for the base cost, $10, 200/100 ∗ 2 or $204).

We are now ready to generate the Tornado Diagrams. We use ArchSim to simulate
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the performance of the system. At this stage, we do not want to run the full fledged

simulations (which may take several hours). Instead, we run fast simulations with

broad confidence intervals (e.g., 90%) that require fewer repetitions and consider all

uncertainties, except disk failures, to be deterministically fixed at their base values.

Fixing the value of the variables speeds up the simulation as we do not need to

compute a random value for each event and allows us to group events. For instance,

instead of generating a random value for each repair cost, we simply count the number

of repairs that were performed during the simulation and multiply by the fixed cost

of making a repair. We treat disk failures differently because deterministic failure

times would cause all disks to fail at the same time (and all data would be lost).

To generate the Tornado Diagrams, we evaluate the AR reliability and cost for

the proposed design with all the variables at their base values. Then, we modify

each variable independently (while keeping all others at their base value) to its high

and low value and evaluate performance again. Each tornado diagram summarizes

1 + 2 × variables simulations (one simulation for the base case and two for each

variable). In our case, this results in a total of 13 simulations per tornado diagram. We

show the result of our simulations in Figure 3.3. We can see that most of the MTTF

variation (95.7%) comes from the disk MTTF variation. Therefore, with respect to

this metric, we can safely assume that the other uncertainties are noncritical and can

be fixed at their base values.

Figure 3.4 shows the equivalent diagram for costs. In this case, 94% of the cost

variation is produced by the operational cost of the disks. Therefore, with respect

to this metric, we can safely assume that the other uncertainties are non critical and

can be fixed at their base values.

In conclusion, we only need to consider disk failures and disk operational costs as

critical uncertainties for the case of a design with disks having a MTTF of 20 years

and failure detection interval of 120 days. To complete the analysis, we need to repeat

the process with the other 15 configurations. Although we do not show the results

for the other cases, the conclusion is the same: only disk MTTF and cost are critical.

(In general, the conclusions could vary from scenario to scenario, but this does not

occur in our case study.)
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Figure 3.6: MTTF for base values
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Figure 3.7: MASC for Base Values
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3.3.5 Eliminating Futile Alternatives

Let us turn our attention to the available alternatives. For that purpose, we used

ArchSim again to run fast simulations. The results are shown in the graphs of Fig-

ure 3.6 and 3.7. From the graphs, we can see that a detection interval of 720 days

never achieves our required minimum of a MTTF of 100 years (it barely achieves it

for disks with a MTTF of 20 years, but the 90% confidence interval includes values

below 100 years). Similarly, disks with a MTTF of 3 years also never achieve our

required minimum MTTF. Note that these results are based on fast simulation where

all uncertainties, except the MTTF of disks, are fixed. If we were very aggressive and

eliminated too many alternatives, we might eliminate the alternative that might be

the best when running the full simulation. On the other hand, by eliminating some

alternatives, the time to run the full-fledged simulations later is reduced. For this

case study, we not consider further disks with a MTTF of 3 years or detection time

of 720 days. If we were more aggressive, we could have also eliminated disks with a

MTTF of 5 years (except when the detection interval is 30 days).

Regarding MASCs, the preliminary analysis shows a surprising result. The MASC

of an AR with costly, but more reliable, disks ends up lower than that of an AR with

the cheap, less reliable, disks. This is because of the cost of buying a new disk

(when the cheap disk fails) and transferring the information to it. Therefore, we drop

disks with a MTTF of 3 years, and detection intervals of 720 days, and reduce our

alternatives from the original 16 to just 9.

3.3.6 Probabilistic Assessment of Uncertainties

For our final analysis we may need to assess the probability distributions of uncertain-

ties more precisely. In practice, we will rely on experts to produce these distributions.

Techniques for probability distribution elicitation are described in [83].

To illustrate, in our case study, we model disk failures with an “infant mortality”

distribution. Recall that this kind of distribution has two phases: First, when most

manufacturing defects would cause a failure, the probability of failure is high, but
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Figure 3.8: MTTF Evaluation
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drops sharply over time; then, in the second phase, the probability of failure is con-

stant. For our disks, we use a distribution where 10% of the disks fail within the first

30 days (i.e., an exponential distribution with a mean of 285 days) and, after that,

disks fail following an exponential distribution with a mean of 20 years.

To model the operational cost of disks, we assume that the library would sign

one-year maintenance contracts. Although the price is fixed for one year, from year

to year, the price specified in the contract may change due to market conditions. We

use a uniform distribution between $200 and $400 per disk to capture these market

fluctuations. Using these more complex distributions makes our predictions more

accurate, but also makes evaluation much harder. Fortunately, ArchSim can handle

such general distributions.

3.3.7 Evaluating an AR Design

In the previous sections, we concluded that the most promising alternatives were the

ones with disks with a MTTF of 5 to 20 years and a detection/repair interval of 30 to

120 days. We also concluded that we would consider the MTTF of the disks and the

yearly operational cost of the disks as critical uncertainties, and the rest as variables.

Using this setup, we use ArchSim to fully simulate the AR and obtain its reliability

and cost.

In Figure 3.8 we see the MTTF of the AR for different configurations. From the

figure, we conclude that we need disks with a MTTF of either 10 or 20 years and
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detection intervals of 30 to 120 days to achieve our target MTTF of 100 years.

In Figure 3.9 we see that the least expensive alternative is the one with a detection

interval of 120 days. Consistent with the preliminary simulation, here again the cost

decreases when using more reliable disks. Therefore, the best alternative is one that

uses disks with a MTTF of 20 years and has a detection interval of 120 days. Such

an AR will have a MASC of $7,822 and a MTTF of 364 years. Note the critical role

that costs played in reaching this decision: if we had ignored costs we could have

easily selected a design that would achieve the desired MTTF but in a much more

expensive way!

3.3.8 Appraising Cost Decisions

In this final phase, we revisit our assumptions by running a sensitivity analysis of

the critical and non-critical uncertainties. We again illustrate the process via our

case study. Our proposed design was an AR with a disk with a MTTF of 20 years

and a detection interval of 120 days. Using ArchSim we ran sensitivity analyses for

all uncertainties, but we will illustrate the results for just two of them: the Detec-

tion Interval (a critical uncertainty) and the cost of detecting failures (a non critical

uncertainty).

In Figure 3.10 we perform a sensitivity analysis for the detection interval. We

want to find out the impact of a small change in the suggested 120-day interval. In

the figure, we can see that the smaller the detection interval, the higher the MTTF of

the AR. In particular, an AR with a detection interval of 240 days will have a MTTF

of 184 years. Thus, we can double the value of the detection interval, and we still

achieve the target archival guarantees. If doubling the value of the detection interval

had caused an important decrease in cost, then we would have needed to reassess our

recommendation.

In Figure 3.11 we see the AR cost for different detection intervals. As expected,

larger detection intervals decrease costs. For instance, increasing the interval to 240

days causes a reduction of cost of $400 or about 6%. We now have to decide if

it is worth considering new alternatives given a potential saving of $400. If this
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is the case, we should return to the formulation phase and add alternatives with

detection intervals in the 120 to 720 day range. Notice that we cannot make a new

recommendation based only on the sensitivity analysis, because the variable we want

to change may interact in unexpected ways with the reliability and cost metrics.

Concretely, in this case, the cost associated with the detection interval might not be

a continuous function, so we may need to revisit our cost estimates and re-run the

simulations.

Let us now turn our attention to the sensitivity analysis of the cost of detecting

failures. This variable has a different nature than the detection interval, as it does

not affect the MTTF of the AR. Additionally, we may not be able to change the

value of this variable (e.g., the cost of detecting failures may be determined by the

market). Therefore, a sensitivity analysis here rather than validating or invalidating

our proposal, gives us an idea of how much the cost of the AR may increase (or

decrease) if our estimate of the value of this variable was erroneous.

Figure 3.12 shows the AR cost for different detection costs. As expected, the figure

shows higher costs when the detection cost increases. The important observation here

is that costs increase almost linearly with a very small slope. An increase of 100%

in the detection cost (from 200 to 400), only results in an increase of 33% in the AR

cost. This means that a small error in the estimate of the detection cost will not

affect the AR much. Unfortunately, it also means that efforts to reduce the detection

cost will have small payoffs.

3.4 Discussion

In this chapter we have studied how to make cost-driven decisions about ARs. We

presented a framework that improves the efficiency and effectiveness of the AR design

process. We believe our design framework and ArchSim can help librarians and

computer scientists make rational and economical decisions about preservation, and

help achieve better ARs.
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4.1 Overview

A digital library repository stores the digital objects that constitute the library. The

key requirement that distinguishes DLRs from other information stores is archival

storage. This archival nature means that the digital objects (e.g., documents, techni-

cal reports, movies) must be preserved indefinitely, as technologies and organizations

evolve[52, 69].

The goal of this chapter is to present an architecture for the archiving of digital

objects. The objective is not to replace database systems, but rather to allow existing

and future systems to work together in preserving an interrelated collection of digital

objects (and their versions) in the simplest and the most reliable way possible. Also,

it is necessary to keep in mind that what we are describing is the lowest layer(s) of

a DLR; higher layers (not discussed in this dissertation) would deal with intellectual

property, metadata, security, and so on.

In Section 4.2 we present the key components of our architecture that make long

term archiving feasible. Then, in Sections 4.3 through 4.6 we describe the functional

components of the architecture. In Section 4.7, we present a complete example that

shows how those components work together. Finally, in Section 4.9 we discuss related

work.

4.2 Key Components

Under our architecture, an Archival Repository (AR) is formed by a collection of inde-

pendent but collaborating sites. Each site manages a collection of digital objects and

provides services (to be defined) to other sites. Each site uses one or more computers,

and can run different software, as long as it follows certain simple conventions that we

describe in this chapter. Our architecture is based on the following key components.

4.2.1 Signatures as Object Handles

Each object in an AR has a handle used to identify and retrieve it. Handles are

internal to the AR and are not used by end users to identify documents. (Example:
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If a user is searching for report STAN-1998-347-B, a naming facility not discussed

here will translate into the appropriate handle, or handles if the report has multiple

components.)

Given an object, we define its handle to be a (large) signature computed exclu-

sively from its contents, using a checksum or a Cyclic Redundancy Check (CRC). If

the contents are smaller than the size of the signature, the object (at creation time)

is “padded” with a random string to make its size larger than the size of a signa-

ture. This scheme has the following properties, which are important in an archival

environment:

• Each site can generate objects and their handles without consulting other sites.

This makes it possible for sites to operate independently. Furthermore, sites

only need to agree on the signature function, not on software versions, character

sets, timestamp services, and so on.

• The handle for an object can be reconstructed from the object itself. As we will

see, this is an extremely useful property, since we do not need to reliably save

any handle-to-object mappings.

• If copies of an object are made at different sites, all copies will have identical

handles. This may seem disconcerting at first, but if the contents are identical,

it makes management simpler to call “a spade a spade.”

• Objects with different contents will, with extremely high probability, have dif-

ferent handles.

The last item requires some discussion, since it may be possible for two different

objects to share a handle, which would be disastrous. However, by making the sig-

nature large (e.g., 128 bits or more), the likelihood of this disaster happening is so

extremely low that it is not rational to worry about it.

The probability of not having a signature collision, p, depends on the size of the

collection, n, and the number of bits, b, in the signature. When we insert the first

object, the probability of not having a collision is 1 (as there are no documents to

collide with); for the second document the probability of not having a collision is
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(2b − 1)/2b as there are 2b possible signatures that can be generated and all but one

of them will not create a collision. In general, when we have inserted k documents,

the probability that the next document will not create a collision is (2b − k)/2b if

k <= 2b, or 0 otherwise. In conclusion, if we assume that the signature function

uniformly distributes documents in the signature space, and that the computation of

each document signature is independent, then the probability that we will not have

a collision in a collection of n documents is:

p =
n−1∏
k=0

2b − k

2b
=

2b!
(2b − n)!2bn

(4.1)

Equation 4.1 is impractical to use when b and n are large numbers as the factorials

will produce an overflow. We can derive an approximation by making p =
∏n−1

k=0 1− k
2b ,

and using the Taylor expansion for the exponential function to obtain p ≈
∏n−1

k=0 e−
k

2b .

Solving the product, we obtain:

p ≈ e−
n(n−1)

2b+1 (4.2)

Using these equations, we derive a bound for the probability p that there is no

disaster in an AR with n objects and signatures of size b bits. The bound is extremely

conservative, but yet we see that a 256 bit signature can make even an AR with 10

billion objects incredibly safe.

Collection Probability of Signature
Size (n) no collisions (p) Size (b)

107 1− 10−9 76 bits (10 bytes)
108 1− 10−9 83 bits (11 bytes)
109 1− 10−9 89 bits (12 bytes)
107 1− 10−24 128 bits (16 bytes)
107 1− 10−63 256 bits (32 bytes)
1010 1− 10−18 128 bits (16 bytes)
1010 1− 10−57 256 bits (32 bytes)

Figure 4.1: Number of bits required for typical n, p

If some applications (or paranoid users) need an absolute certainty that each sig-

nature is unique, then we offer the following enhanced identification scheme. Handles
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are extended to have two fields: a unique publisher field and the signature of the ob-

ject. The publisher field is the unique code of the site that first publishes the object;

this publisher code is assigned to the site by some authority. The publisher field of an

object does not change when the object migrates to other repositories. The second

field is the same as the signature described earlier. When a site creates a new object,

it first stores its publisher field in the object header. Then it computes the signature

of this extended object and checks if any other local object has the same signature.

In the extremely rare case that there is a conflict, we add a discriminator, a random

string of bytes, at the end of the new object. The discriminator is included in the

computation of the signature (and therefore will make the object map to a different

signature), but it is filtered out when the object is returned to a user. From then on,

the handle of an object is computed (at any site) by reading its publisher value and

adding to it the object signature.

4.2.2 No Deletions

Because of our handle scheme, objects cannot be updated in place. That is, if the

content of an object is modified, it automatically becomes a new object, with a

different handle. This is actually an important advantage, since it eliminates many

sources of confusion. For instance, one cannot correct a typo in a report and pass it

off as the same object. (We do provide a higher level mechanism for tracking versions

of an object; see Section 4.5.) Similarly, if a stored object is corrupted due to a disk

error, the corrupted object will not be confused with the original.

Another fundamental rule in our architecture is that objects are never (voluntarily)

deleted. Allowing deletions is dangerous when sites are managed independently; in

particular, it makes it hard to distinguish between a deleted object and one that was

corrupted (“morphed” into another) and needs to be restored. Ruling out deletions

is natural in a digital library, where it is important to keep a historical record. Thus,

books are not “burned” but “removed from circulation.” We can provide an analogous

high level mechanism for indicating that certain objects should not be provided to

the public.
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Having immutable objects presents some management challenges. For example,

say we create a new version Y of some object (a video clip) X. We cannot mark X

directly to indicate there is a new version Y that should be accessed, because this

would be an in-place update to X. In Section 5 we show how we can “indirectly”

record such changes. Of course, having no deletions increases storage requirements.

We do not believe this is an important issue because (1) storage costs are so low, and

(2) we are only archiving in this fashion library objects, not all possible data.

4.2.3 Layered Architecture

Since each AR site may be implemented differently, it is important to have well defined

and as simple as possible site interfaces. Furthermore, it is also important to have

clean interfaces for services within a site, so that different software systems could be

used to implement individual components. We achieve this in our architecture by

defining service layers at each site. The layers include:

1. Object Store Layer: The Object Store layer uses a Data Store (e.g., file system,

database management system) to persistently save objects. This layer may use its

own scheme to identify objects (e.g., file names, tuple-ids). We refer to these local

identifiers as disk-ids.

2. Identity Layer: This layer has two main functions: (i) it provides access to objects

via their handles (signatures); and (ii) it provides basic facilities for reporting

changes to its objects to other interested parties.

3. Complex objects layer: Manages collections of related objects. Its services could

be used to maintain the different versions (or representations) of a document.

4. Reliability layer: Coordinates replication of objects to multiple stores, for long

term archiving. The assumption is that the Object Store layer makes a reasonable

effort at reliable storage, but it cannot be counted on to keep objects forever.

5. Upper layers: Provide mechanisms for protecting intellectual property, enforcing

security, and charging customers under various revenue models. It can also provide
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associative search for objects, based on metadata or contents of objects, as well as

user access.

Data Store Data Store

User Acess

Security and Accounting

Import

Metadata and Indexing

Reliability

Complex Object

Identity

Object Store

Site 1

User Acess

Security and Accounting

Import

Metadata and Indexing

Reliability

Complex Object

Identity

Site 2

Object Store

Figure 4.2: Layers of a Cellular Repository.

In Figure 4.2 we illustrate the layers of an AR. Each “column” in the figure rep-

resents a site, and each “row” a software layer. We call the implementation of a layer

at a site a cell, and the complete repository a cellular AR. Cells can collaborate with

others to achieve their goals. For example, the reliability cell at Site 1 communicates

with the reliability cell at Site 2. Cells below the reliability layer only deal with their

local site. In this dissertation we only study the grayed-out cells.

4.2.4 Awareness Everywhere

Awareness services (standing orders, subscriptions, alerts) are important in digital

libraries. They are also important for our reliability and indexing layers: if one site

backs up another, it must be aware of new objects or corrupted objects in order to take

appropriate action. Similarly, to maintain an index up-to-date, changes need to be

propagated. In many systems, awareness services are added as an afterthought, once

the base storage system is developed, and this makes it hard to detect all changes. In
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our architecture, awareness services are an integral part of every layer. This makes it

possible to build very reliable awareness services that can be used for replication and

indexing.

4.2.5 Disposable Auxiliary Structures

Layers typically maintain auxiliary structures for improving performance. In our ar-

chitecture these structures are designed to be disposable, so they can be reconstructed

from the underlying digital objects. To illustrate, let us consider the Identity layer.

For efficient lookup, it needs an index structure that maps a handle (signature) into

the local disk-id (e.g., file name). One option would be to store this index as a digital

object, making it part of the AR. However, this opens the door for inconsistencies.

For instance, the index may say that the object with handle H can be found at disk-id

D, but the signature of the object at disk-id D is not H. Instead, we maintain that no

auxiliary structures are part of the AR. (The structures may be on secondary storage

that are not part of the AR.) If the structures become corrupted or inconsistent with

the AR, they should be deleted and reconstructed from scratch.

In addition to avoiding potential inconsistencies, this approach also makes it easy

to migrate objects to a new store, when the old one becomes obsolete. Auxiliary

structures, which are typically intricate, do not have to be migrated to the new

system. The new system can simply obtain the digital objects and build its own

structures, using whatever implementation it desires.

4.3 Object Store Layer

The Object Storage Layer is the lowest AR layer. This layer treats objects as a

sequence of bytes and uses a local disk-ids to identify objects. The disk-ids are

meaningful only for a specific Data Store, and their format varies from data store to

data store. For example, if the Data Store is a standard file system and each object

is saved in a different file, the disk-id could be the file name. On the other hand, if
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all objects are saved in a single sequential file, then the disk-id could be the name of

that file, the offset into that file, and the length of the object.

4.3.1 Object Store Interface

The interface of the Object Storage Layer has the following functions:

• OS Get(disk id):

Read an object given its disk-id.

• OS Put(bag of bits):disk id:

Insert a new object in the repository and return the disk-id associated with it.

• OS Awareness():list of disk ids:

List all disk-ids.

The last function, OS Awareness(), lets a client perform a “scan” of the entire

collection. This is the most primitive type of awareness service one can envision. Its

simplicity makes it easier to implement an Object Store that is very robust. This

awareness service is used by higher layers when they have lost their state, or when

they wish to verify their state.

For building a reliable system, one must not only define the desired events (what

we have done so far in this section), but also the undesired expected events [39].

The latter are those events that may occur because of failures, but which recovery

mechanisms (at higher layers) will handle. For this layer, the undesired expected

events include: (i) OS Get() returning a corrupted object; (ii) OS Put() failing to

insert an object (and returning an error); (iii) OS Awareness() not returning the

disk-ids of all objects ever inserted with OS Put()).

4.3.2 Object Store Implementation

Having an extremely simple interface (e.g., no deletes, primitive awareness) reduces

the number of undesired events that one needs to consider, and makes it possible to
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build a rock-solid store, with few “moving parts” and few things that can break. In

addition, this simple interface allows us to use almost any secondary storage system

as a Data Store, including legacy systems.

To illustrate a possible way to build a solid store that supports this interface,

consider the following design. Objects can be placed sequentially on a disk (or tape),

with a unique pattern separating them. The disk-id would be the disk address of

the first byte. To list all handles, we simply scan the disk sequentially looking for

the special start-of-object pattern. Since there are no deletes or updates, any object

found during the scan is an object to report. Since there are no auxiliary structures

(e.g., no i-node tables, no free space tables), there are no structures that can be

corrupted. To migrate this collection of objects to a different site, we simply must

move this single stream of objects, and nothing else. We stress that this is not the

only way to build a cell for this layer, but it is the way we expect it to be built in a

good, reliable repository.

4.4 Identity Layer

The Object Identity Layer provides access to objects through their globally unique

handles, provides an awareness service based on handles, and attempts to correct

some of the failures of its underlying Object Store cell.

In our architecture, digital objects have two components: a header and a body.

For example, from the point of view of the identity layer, the body of a digital object

contains the bits given to an Identity cell for storage. In the header, the cell can

store system data (e.g., size of object). The resulting object (header+body) can then

be sent to the object store. Unknown to the identity layer, the body may contain

headers added by higher layers (e.g., the type field discussed in Section 5). This

is analogous to how packets move between network layers, with lower layers adding

their own headers. However, unlike network layers, our lower layers do not remove

headers when returning an object to upper layers. The complete headers, as recorded

in the Data Store, must be preserved, so that any layer can compute the signature

and verify that it is the correct object. Of course, each layer only interprets its own
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header, not those of lower or higher layers.

4.4.1 Identity Interface

The Object Identity Layer implements the following functions, analogous to the Ob-

ject Store functions:

• IL Put(bag of bits):handle:

Creates an object and returns the global handle associated with it.

• IL Get(handle):bag of bits:

Gets an object given its handle.

• IL Awareness():list of handles:

Returns all handles of objects in the repository.

• IL Latest(client):list of handles:

Lists all handles created in the repository since the last time the client invoked

this function.

The IL Put function is used to create an object. The function receives the data

and calls the Object Store layer OS Put() function to save the data on secondary

storage. The handle for the new object is computed and returned to the client. The

IL Get() function returns the object given its handle. We discuss below how this

function can be implemented.

The IL Awareness() function lists the handles of all objects in the local store. The

IL Latest(client) function is a specialized awareness service. We do not explain

here in detail how it operates, but intuitively, it reports objects created since the

last time the client invoked this function. It is provided to improve efficiency, since

with it clients do not have to be informed of objects they have seen before. Since

IL Latest() must rely on auxiliary structures (somehow recording what new objects

have not yet been seen by clients) it is not as reliable as the IL Awareness() function
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that simply scans the Object Store for all objects. In Chapter 5, we discuss options

for implementing such an awareness service.

Undesired expected behavior of this layer includes (i) losing some object; (ii)

IL Put() returning an error; (iii) the awareness functions not returning all of the

handles. The Identity layer should attempt to make the probability of these and other

undesired events as low as possible. One way to do this is to check for undesired events

of the Object Store layer. Again, note that our architecture significantly reduces the

number of undesired events. In particular, the “wrong” object can never be returned

by a IL Get call because the fact that it can be trivially checked that the object

matches the requested handle. Similarly, we never return a “deleted” object since

there are no deleted objects!

4.4.2 Identity Implementation

There are two ways to implement the IL Get(handle) function. The first is to

obtain all disk-ids from the Object Layer, and then retrieve each object in turn and

compute its signature, until an object whose signature matches the requested handle

is found. The second way is to have the Identity layer keep an index mapping handles

to disk-ids. The index is initialized with a complete scan of the Object Store, and

then it is incrementally maintained as new objects are created. In this case, the

IL Get(handle) function simply looks up the disk-id for the given handle, and fetch

the object from the store. Note that indeed this index is disposable, as discussed

in Section 4.2.5. As a matter of fact, in a good implementation, the index will be

periodically discarded and rebuilt from scratch, to ensure that its structures have not

been corrupted, i.e., to reduce the likelihood of undesired events at this layer.

Similarly, the IL Latest() function uses auxiliary structures to track the objects

not yet seen by a client. These structures must also be disposable. It should periodi-

cally be deleted, in order to force clients to use the more general IL Awareness. This

causes the client to check if it indeed has all the objects known to the Identity layer,

and to re-initialize the auxiliary structure used for future IL Latest calls.

As discussed earlier, the Identity layer must handle many of the undesired events of
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the lower cells. Specifically, suppose that the Identity layer is servicing a IL Get(handle)

call, and that through its structures has determined that the object is at disk-id.

Since the call OS Get(disk id) may return a corrupted object, the Identity cell must

check that the fetched object indeed has the handle handle. If there is a discrepancy,

the Identity Layer reports that the object has not been found (and perhaps attempt

to reconstruct the mapping between handles and disk-ids). However, it cannot restore

the object; this service will be provided by the Reliability Layer, discussed later in

this chapter. (Actually, we cannot be sure the problem was caused by the Object

Store; it could be the case that the auxiliary structure which told us that disk-id

was the place to look for the object was incorrect.)

4.5 Complex Object Layer

In an AR, multiple digital objects may be interrelated. For example, a technical

report may have several renditions (e.g., plain ASCII, postscript, Word97), where

each of these is a simple object. Similarly, a report may consist of a sequence of

versions, representing the state of the report over time. The Complex Object layer

implements three useful constructs, tuples, versions, and sets (among others), that

can be used for implementing higher level notions such as “technical report,” and

“access rights for a movie.” In this chapter we do not address the details of the high

level concepts, which would be implemented by higher layers. References [21] and

[68], among others, propose specific organizations for “documents” and other high

level constructs.

Traditional methods for building complex structures do not work in our AR en-

vironment because objects cannot be deleted or modified. For instance, we cannot

implement a set as an object containing pointers to other member objects, since the

membership could never be modified. (If the set represents the renditions of a report,

it would mean that a new rendition could never be added, for example.) The schemes

we propose in this section allow the structures to evolve.

A particular Complex Object cell interacts with a single Identity cell, so all the

components of a complex object are assumed to reside in the same Identity cell. (A
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complex object may be replicated at another site as discussed in Section 4.6.)

The Complex Object layer adds a type field to all objects, as it hands them to

the Identity Layer. The type field is used to record how the object is used by this

layer. The Complex Object layer offers its clients an interface (not shown here) for

accessing objects, analogous to that of the Identity Layer. For instance, the call

CO Put(bag of bits) is handled by adding the type base to the bag of bits, and

calling IL Put(new bag of bits). The base type indicates that this object is not

one of the structural objects generated by the Complex Object layer.

4.5.1 Tuples

The basis for implementing any complex object is the tuple structure. A tuple is

simply an object (of type tuple) containing an ordered list of object handles. The

interface for tuples is:

• CO CreateTuple(list of handles):handle:

Creates a tuple containing the handles passed as parameters; returns the handle

of the new tuple object.

• CO GetTuple(handle):list of handles:

Returns the list of handles in the given tuple.

Figure 4.3 illustrates two tuples. Tuple T1 (created first) contains the handles of

objects O1 and O2. We can represent this as T1 = 〈O1, O2〉. The second tuple T2

is 〈〈O1, O2〉, O3〉. Note that one could also create the tuple 〈O1, O2, O3〉, but it is

different from T2.

4.5.2 Versions

Versions are a way of implementing updateable objects in an environment in which

direct updates are not allowed. When using versions, we update an object by creating

a “new” version of it. Versions support these functions:
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Tuple

Tuple

Tuple T1

Tuple T2

Object O3

Object O1

Object O2

Base

Data

Base

Data

Base

Data

Figure 4.3: The tuple << O1, O2 >,O3 >

• CO CreateVersionObject(): handle :

Creates a new version object and returns its handle.

• CO Update( handle, new version ):

Creates a new version of the object with the given handle.

• CO Read(handle):list of handles:

Returns the list of handles that are the current versions of the object.

• CO Versions(handle):list of handles:

Returns the list of all versions of the object.

Figure 4.4 illustrates how versions can be implemented using tuples. Object V1

(type version object) is the “anchor” for the sequence of versions. Version 1 is

recorded by the lower tuple object in the figure. Its list of handles contains (a) the

handle of the anchor version object; (b) the handle of the object that constitutes this

version; and (c) the handle for the previous version. (If this is the initial version,

this last handle is null.) The upper tuple object records a second version. Because

objects cannot be updated, the version “chain” goes from a more recent version

to earlier ones. In addition, the anchor version object, which identifies this chain,
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Figure 4.4: A document with versions v1 and v2

cannot contain a list of all versions. (We would need to update it as new versions

are generated.) The structure of Figure 4.4 was created by the following sequence of

calls:

• CO CreateVersionObject(). This returns the anchor V1.

• CO Update( V1, O1 ), where O1 is the handle of the first version.

• CO Update( V1, O2 ), where O2 is the second version.

To read the latest version of V1, we use the call CO Read(V1), which returns a

handle to O2. In our example there is only a single latest version, but as we discuss

in Section 6, replicating a chain at several sites and independently updating it may

lead to multiple latest versions.

The Update, Read, and Versions functions need to determine the latest version,

given an anchor object V. This must be done indirectly. One way is to scan all tuple

objects, looking for any that reference anchor V. The one(s) that are not referenced by

other tuples are the latest versions. Another way is to build a disposable structure that

maps anchors to their member objects. Such a structure can be built by scanning all

tuple objects, and then incrementally maintained as new CO Update calls are made.

Our design ensures that this disposable structure is not essential for the long term

survival of the AR.



96 CHAPTER 4. AN ARCHITECTURE FOR ARCHIVAL REPOSITORIES

To record that a version chain has “ended” (e.g., it is inaccessible), we can generate

a new version that points to a distinguished null object. The CO Update call will

refuse to create new versions beyond this final one. (We could actually define several

“ending” objects to indicate different semantics, e.g., the version chain is frozen, it

should not be accessed.)

In summary, version objects provide a mechanism for “updating” and “deleting”

AR information. Since this mechanism builds upon our immutable objects, it provides

very reliable and long term storage.

4.5.3 Sets

Other structures can be implemented in a similar fashion. For example, Figure 4.5

illustrates how a set of objects can be implemented. Each member is a tuple that

points to the set anchor (type set), and the actual member object. The interface for

sets may include the functions:

Member M2

Tuple

Member M1

Tuple

Set
Base

Data

Data

Base

Object O2

Object O1

Figure 4.5: A set with two members

• CO CreateSet():handle:

Returns the handle of an empty set.

• CO InsertMember(set handle, handle):

Inserts a member into a set.
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• CO Member(set handle, obj handle):boolean:

Returns TRUE if the object obj handle is a member of set set handle.

We may have additional functions for sets such as Union, Intersection, and Dif-

ference, but these are not discussed here. As with versions, set membership can only

be determined by scanning all objects, and looking for those with a given set an-

chor. Disposable structures can be implemented to make this process efficient. As we

discuss in the next section, when sets are replicated at different sites, there may be

temporary inconsistencies regarding membership.

4.6 Reliability Layer

The Reliability Layer copies objects from one site to another to increase the probabil-

ity that objects persist for an extremely long time. This is achieved by establishing

replication agreements between multiple sites to mutually maintain replicas of objects

of a given replication group. For example, if the reliability layer at Site 1 establishes

a replication agreement with Site 2 for objects of group G1 (say a technical report

series), then every time an object belonging to G1 is created at one of the sites, a

copy must be propagated to the other site. Agreements are multilateral: all members

are responsible for backing up objects of the other members.

The Reliability layer adds two header fields to all objects, as it hands them to

lower layers for storage. The group field records the replication group this object

belongs to; i.e., it sets the desired level of replication. The group is selected by the

client who creates the object in the first place. The second field, agrmt, is used to

distinguish objects that represent agreements from those that do not.

Each replication agreement is recorded in a version complex object. The agrmt

field in this object is set to True, and the group field is set to the identifier for this

group. The content is a list identifying all the sites participating in the agreement.

If the agreement changes, a new version is generated, with the new participants (and

same agrmt and group fields). Note that all the objects that make up the version

agreement for group G1 are themselves in group G1. Hence, they will also be backed
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up to participating sites. Moreover, the replication functions we describe here can be

used to migrate a collection from one site X to another site Y (by first adding Y to

a replication group, and then dropping X).

4.6.1 Reliability Interface

The interface of the Reliability Layer includes the following functions:

• RL NewAgreement(): gr hdl

Creates a new replication agreement, identified by the returned gr hdl handle.

This handle is the group identifier, and should be given to all objects in the

group.

• RL Participants(site list, gr hdl):

Makes site list the current set of participants in gr hdl.

• The interface also includes the functions in the Complex Object interface. For

the functions that create objects, an additional parameter gr hdl is added, to

indicate the replication group to which they belong. Awareness functions are

extended so that objects belonging to a given replication group can be requested.

4.6.2 Implementation

When a RL NewAgreement() call is received, the Reliability cell simply calls

CO CreateVersionObject(), receiving a handle G that will be used as the group

identifier. Next, the function CO Update(G, O1) is called to create the initial version

of the agreement. Object O1 has its agrmt field set to True, its group field set to G,

and its contents set to an empty set of sites. The result of the RL NewAgreement()

call is G, which can then be used by the client to create objects in this replication

group.

An AR administrator then issues a RL Participants call to record the partici-

pating sites. That call is issued at only one of the participating sites, since the site

will immediately propagate the news to the other sites. The call generates a new
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version of the agreement (in the version chain anchored by G), containing the new list

of participants.

Once an agreement is in place, the Reliability Layer can enforce it in a variety

of ways. Here we illustrate one simple way, assuming Reliability cell A is the one

actively ensuring Reliability cell B has copies for group G. (Cell B would perform

a similar process concurrently.) Periodically, A requests from B its complete list of

handles corresponding to object in group G. To comply, cell B uses its lower awareness

services to obtain all object handles (in its storage partition), and forwards those in

group G to A. Cell A performs a similar scan at its own site, and then compares the

handles. If a handle is seen locally but not at B, that object must be copied to B.

(Cell A asks cell B to create a new identical object. The object may have existed at

B before, but it may have been corrupted.) Similarly, if an object is missing locally,

it is requested from B and created at the local site.

When asked to replicate objects of a complex type, the reliability layer creates

shallow duplicates. For example, let us suppose that a version object V1 is created,

together with a first version of a postscript technical report. Let us assume that all

these objects are defined to be in group G1. Next, a second V1 version is created (e.g.,

an updated report), but for some reason its group is defined to be G2. A site that is

only in G1 will receive the first version of the report, and not the second one. Thus,

to ensure that a complex object is fully replicated, all of its components must be in

the same group. Auxiliary tuple objects created by the Complex Object Layer do

not have a replication group field, since they are generated implicitly by the Complex

Object layer. However, these objects still need to be replicated, as part of the complex

structure they participate in. To achieve their replication, we implicitly assume that

the replication group of a tuple object is the union of the replication groups of the

base objects it points to.

The stored replication agreement is used by a Reliability cell to “remember” its

agreements in case of problems. Let us consider a few sample problems as an il-

lustration. In our first scenario, Reliability cell A fails while participating in group

G, and loses its state, but the latest agreement for G was not lost at the local site.
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Cell A restarts by scanning the local site for all objects1 with their agrmt field set,

eventually finding the latest version of agreement G. From that point on, it resumes

its backup work with the other participants. Any G objects lost during the failure

will be reconstructed from the other participants.

In our second scenario, for example, when cell A recovers, no record of agreement

G is found locally. Hence, cell A does not know it is participating in G. However,

hopefully other G sites are active, and they will realize that A has lost objects, and

will restore them. Since the agreement for G is in the group, it will also be restored.2

Eventually A realizes there is an agreement in which it participates, and resumes its

activity. (Cell A needs to periodically scan its local object to ensure it has accurate

information.)

In our third scenario, the latest version of agreement G is lost, but some older

version survives. When A recovers, it starts its activity with an out-of-date list of

participants. This may cause it to temporarily miss some of the sites that contain

replicas, and may cause it to send object copies to sites that are no longer participants.

However, the latest version of agreement G will eventually make it to A, and A

will eventually operate correctly. We emphasize that the only “damage” done in

this scenario is the creation of non-needed replicas at sites that had dropped out

of the agreement. While un-needed copies may waste some space, they in no way

compromise the objects that are already stored.

The reliability layer guarantees an “epidemic” [20] propagation of copies. If we

look at a given object X in group G, X will be, with extremely high probability, at

all G sites. There may be periods of time when X is missing at some sites (e.g., a

copy was corrupted), but it would take an unlikely sequence of failures to make it

disappear from all G sites. Note that there is no notion of a distributed commit for X.

Object X is committed when it is created at one site, and its probability of long term

existence increases as copies are propagated. The fact that our objects are immutable,

1This assumes that Cell A knows what its local site is. We can agree in advance on fixed ports
for the local layer interfaces.

2Object G, the anchor for the version chain, is not in group G since it was created before the
group existed. However, the versions in G are in the group and are sufficient to reconstruct the latest
version.
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simplifies the protocol and increases the chances it will work correctly. In particular,

there is no danger that the distributed X copies will become “inconsistent.”

When a client creates an object X, the client may wish to know when it has been

replicated at all G sites, so it knows it has reached its “extreme safety” mode. For

this, we can add a function to the Reliability layer that checks if an object is found

at all participating G sites.

When complex objects are in the same group, they get replicated and their copies

converge. Sites may temporarily have incomplete information, but we do not view

this as a strict inconsistency. For example, site A may think that a technical report

is available in ASCII and Postscript, while site B may think it is available in ASCII

and Word97. If this information is encoded as a set, eventually both sites will know

about all three formats.

4.7 A Complete Example

In this section we give an example of how the layers described in the previous sections

work together. In this example, we will have two repositories containing technical

reports, one at Stanford and another one at MIT. These two sites have a replication

agreement for all objects belonging to the technical report group TRG.

Let us suppose that an upper cell at Stanford wants to publish a technical report.

The publisher anticipates that several versions of this document may be generated and

decides to use a “Version” complex object. (For the sake of simplicity, we are assuming

that each version of a technical report is just one object). First, the publisher asks

the Reliability Cell at Stanford to create a new version object V belonging to the

replication group TRG. Recall that the version object does not contain the data for

the technical report (we will save this data as its first version). The Reliability Layer

calls the Complex Object Layer function CO CreateVersionObject(). In turn, the

Complex Object cell generates the version object and saves it by calling the Identity

cell, which calls the Object Store cell. As a result of these calls, the Reliability Layer

obtains the handle of the version object V .

After creating the version object, the client is now ready to generate the first
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version of the technical report. First, the client creates the technical report object,

TR1, by calling the Put() function in the Reliability cell at Stanford. The reliability

cell sets the group field to TRG and asks the lower layers to save the report. After

creating TR1, the client makes TR1 a version of V by calling the Update() function

in the Reliability Layer. The Reliability Layer passes the request on to the Complex

Object Layer which generates an object, V1, containing a pointer to V , TR1, and the

previous version (which is a NULL pointer in this case as this is the first version).

At the left of Figure 4.6 we show the state of the Stanford site (at this moment, the

MIT repository would be empty).

Version 1
TR TR1

Version
Object

V1

V

Stanford

Version 1
TR TR1

Version
Object

V1

V

MIT

Figure 4.6: The repositories after replication.

As there is a replication agreement between MIT and Stanford for the objects

in the Technical Report group, the MIT (or the Stanford) Reliability Cell will try

sometime later to enforce the agreement by querying the other reliability cell and

finding out that the newly created objects, TR1, V , and V1, are missing in the MIT

site. As described in Section 4.6, the simple way of doing this query is to use the

IL Awareness() function to obtain all the handles in the other site and then compare

those handles with the handles on our own site. A more efficient way of doing this

query is to use the IL Latest() function to discover which handles have been added

to the repository since the last time it was visited. There are more efficient awareness

algorithms that will be discussed in Chapter 5. After finding the handles of the

missing objects, the replication process creates replicas of those objects in the MIT

site. At this moment, the content of the repository is shown in Figure 4.6. (We do
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not show the Reliability Agreement Object that we are assuming was created earlier.)

Note that at this point we could have a synchronization problem if we concurrently

add two new versions, one at MIT and the other at Stanford. Figure 4.7 illustrates this

by showing the state after Stanford generated Version TR2, and MIT independently

created Version TR3. When the replication process copies the new objects to the

other sites, we end up with multiple latest versions, as shown in Figure 4.8. That is,

the call CO Read(V) will return both TR2 and TR3. We view this as an application

“problem.” Perhaps it was the intention to have multiple current versions for this

report, i.e., the Stanford and MIT versions of a jointly authored paper. If this was

not the intention, then the “report creation” layer should ensure that only one author

at a time creates new versions of a report. This type of sequencing could be enforced

by a synchronization service that is not discussed here.

TR
Version 1
TR TR1 TR2

Version 2

Version
Object

V

V2V1

Stanford MIT

Version
Object

V

V1

TR
Version 1
TR TR1 TR3

V3

Version 3

Figure 4.7: New versions at Stanford and MIT.
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Version 2

V1

Version
Object

V

Version 1
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Figure 4.8: Inconsistent State.
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Let us return to the state of the repository of Figure 4.6 and let us suppose that

the Stanford Repository has a failure that completely destroys all its information.

After this failure, the reliability process at Stanford cannot recover its data, since its

Reliability Agreement Objects (that indicate where the replicas are) have been lost.

However, some time later, the Reliability cell at MIT visits Stanford and it finds out

that some objects, including the Replication Agreement Objects have been lost at

Stanford. The Reliability Cell at MIT restores those objects (and potentially some

others), allowing the Reliability cell at Stanford to also start recovering its destroyed

digital objects.

4.8 Discussion

In this chapter we have studied an architecture for long-term archival storage of digital

objects. We have argued that we can build a simple, yet powerful, archival reposi-

tory by using signatures as object handles, not allowing deletions, having awareness

services in all layers, and using only disposable auxiliary structures. We believe this

architecture is well suited for a heterogeneous and evolving environment because each

site only needs to agree on some very simple interfaces, on a signature computation

function, and on some simple object header structure (e.g., for type and group fields).

Although sites may use auxiliary structures, they need not agree on their details and

use. There are no i-node tables, out-of-sync clocks, inconsistent indices that can cause

us to lose or corrupt information. Since objects are never deleted or modified in-place,

many sources of confusion are eliminated, yielding an extremely safe AR. Migration

of information from an obsolete site to a new one is simple, and can be performed by

the replication services.

4.9 Related Work

Several architectures have been proposed and implemented for digital libraries [3, 38].

These architectures focus on interoperability and distribution, but are not directly

concerned with the problem of long-term reliability.
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The task force on preserving digital information [15] has investigated the means

of ensuring long-term safekeeping of information in digital archives. As in our ar-

chitecture, the task force regards migration as an essential tool in preserving digital

archives. However, the task force deliberately avoids defining the implementation

details for a digital archive.

At the secondary device level, the Petal [48, 49] and Frangipani [81] projects have

designed highly-available, scalable block-level storage systems that are easy to man-

age. The availability of the system is achieved by using data striping and redundancy.

Although these projects consider the problem of long-term data reliability, their aim

is a “file system” replacement. They allow in-place updates and deletions, and use

application generated filenames (handles).

In the business world, Computer Output to Laser Disk (COLD) systems have

been very successful in solving the problem of long-term archiving of data that is not

frequently accessed. COLD systems were originally designed to replace microfiche and

paper archival applications with online computer systems. A typical COLD system

captures the output of a computer program and stores it. Typically, the storage media

are CD-ROMs but nowadays other types of storage media (magnetic disks, RAID,

magnetic tape, and re-writable laser disks) are also used [27]. COLD systems are

monolithic with very few computers, all of them running exactly the same software.

This is different from the heterogeneous environment we have considered. Storing

data on a write-once COLD device forces the data to be immutable, as in our design.

However, COLD systems always assume that some persistent storage is available on a

write-many device, which can be used for some structures. We assume all AR storage

is immutable.

Systems based on layering have proven effective especially in the area of network-

ing. Specifically, the Open System Interconnection model (OSI) provides a standard

that divides a network into seven layers with clear responsibilities [77].
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5.1 Overview

In Chapter 4 we presented a general architecture for Archival Repositories. A key

service that all layers in the architecture must provide is object awareness. Clients

must be aware of changes at the repository, either new objects, deleted objects, or

modified objects. The focus of this chapter is on awareness services. These are

fundamental services which are necessary to decouple the storage of digital objects

from their management (e.g., search, access rights, naming, payment). Furthermore,

the traditional timestamp-based approach (used on the Web and in file system based

stores), and other common schemes have some serious problems. Thus, in this chapter

we carefully consider the spectrum of options for awareness services (even beyond the

write-once paradigm) and suggest some solutions that have important strengths for

digital libraries.

To illustrate some of the problems with “traditional” awareness schemes, consider

our experience with the CS-TR Project [18]. Under this project, Computer Science

departments and research laboratories (currently about 50 participating) provide ac-

cess to their technical reports. For each report, a bibliographic record (file) is created,

giving the basic meta-data for the report (e.g., title, authors, date). Various index

services need to obtain new bibliographic records on a regular basis. One of these

indexes was SIFT, a selective dissemination service at Stanford wherein users could

“subscribe” to new reports by providing keywords that described their interests.1

Each CSTR store provides an interface to obtain new records, created after some

given timestamp.

First, we considered using as the timestamp of a bibliographic record the creation

time of the file that held the record. With this scheme, a store could simply look for

new files when a client requested new records. This option was ruled out because we

wanted to be able to migrate and replicate records. For example, when the hardware

holding a collection becomes obsolete, we need to move the records to a new file

system (digital libraries are long lived, so we need to plan for this!), and this would

generate new timestamps for unchanged records. Similarly, we wanted the replicas of

1SIFT is now operated by InReference; see http://www.reference.com. The CS-TR component
was actually discontinued in 1996 when the service was commercialized.
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a record at two stores to have the same timestamp, since otherwise an index service

might consider one a new version of the other. For these reasons, we ruled out file

system generated timestamps.

Instead, we used application generated timestamps: a field within the biblio-

graphic record indicated when the record was created or modified by a librarian.

Unfortunately, this scheme led to another problem: librarians would modify records

(e.g., fix a typo in the author’s name), and would forget to update the timestamp.

Similarly, for one reason or another, records were created with old timestamps. All

this caused services like SIFT to miss records and provide incorrect indexing.

Although we have assumed no voluntary deletions in our archival architecture, it

is possible for files or documents to be involuntarily deleted (e.g., due to user error or

media decay). Therefore, our synchronization algorithms need to be able to cope with

deletions. Unfortunately, timestamps, either system or application generated, do not

cope well with object deletion. That is, a store looking for objects with timestamps

greater than a certain value, will not notice that some objects have disappeared

entirely. This problem is of course clear to anyone who indexes Web sites. These

sites are incapable of reporting deleted web pages, so we frequently see indexes that

point to non-existent pages. While this may be acceptable for the Web, not all digital

libraries will be satisfied with this type of awareness service.

An alternative to timestamp-based schemes that we carefully explore in this chap-

ter are content-based schemes. In one simple version of these content-based schemes,

the store can compute a signature (e.g., large checksum) for each object it holds. It

sends this full collection of signatures to a client, which can then compare the sig-

natures to the those for the objects it holds (or has indexed), yielding the identities

of the changed objects. These schemes are especially attractive for digital libraries

because they are not sensitive to how the bits are stored, only to the actual content

of the object. However, it can be very inefficient to compute all the signatures and

to send them to clients. Thus, in this chapter we also explore techniques to make

content-based schemes practical.

In summary, this chapter makes two contributions:

• It surveys the spectrum of awareness options, highlighting the advantages and
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disadvantages of each. Interestingly enough, all the awareness options that we

know of can be captured by a single algorithm with configurable options. We

present this unifying algorithm, UNI-AWARE, and show how different choices

for its parameters lead to different awareness mechanisms such as timestamp-

based, log-based, triggered updates, signatures, and so on.

• For signature-based schemes, we present several enhancements that reduce the

computation and communication costs involved. As stated above, we believe

that these schemes have significant benefits in a digital library environment, in

which the way objects are stored may vary from one site to another, and over

time.

We start our discussion in Section 5.2 by defining the awareness problem more

formally. Section 5.3 briefly surveys related work, and Section 5.4 surveys the design

space for awareness mechanisms. Our unifying algorithm, UNI-AWARE, is presented

in Section 5.5, while Section 5.6 discusses optimizations for the signature-based algo-

rithms.

5.2 Problem Definition

A data store contains a set of digital objects R = {O1, O2, ...ON}. Each object has a

handle, Oi.H, that can be used by a client to retrieve the object from the store. In

addition, each object may have other attributes such as:

• Timestamp, Oi.TS: a timestamp representing when the object was created or

last modified.

• Store, Oi.S: a globally unique identifier for the store that contains the object.

• Name, Oi.N : a user readable name for the object, e.g., “STAN-CS-456-97.”

Names can often be used to retrieve objects, with the help of a name service

that maps names into handles.

• Title, Oi.T ITLE: the object title.



110 CHAPTER 5. ARCHIVE SYNCHRONIZATION

• Author, Oi.AUTHOR: the object’s author(s).

• Body, Oi.B: the main body of the object, e.g., a postscript file for the object,

or the full text in ASCII.

Various sets of attributes are used in practice, e.g., the Warwick Framework [46] or

the Dublin Core [84]. Each defines a list of possible attributes and their types (e.g.,

strings, lists of strings, nested records). The attributes for an object (sometimes called

the meta-data) can either be stored together with the object itself or in a linked but

separate file, or they can be computed on the fly from the object. (For example, the

title may be stored explicitly in a meta-data file, or it could be extracted by scanning

the document for the string that follows “Title:.”) For simplicity, in this chapter we

assume that all attributes are simply part of each object Oi.

We model object removal and creation as deletions and insertions to set R. We

model the modification of Oi (or any of its attributes) by the creation of a new object

Oj. For modification, there are three cases to consider:

1. Versions: The old object Oi remains as a previous version. The handle of the

new object, Oj.H, is necessarily different from Oi.H in order to distinguish the

two versions.

2. In-Place Update: The old object Oi is removed, and the handle of the new

object is unchanged, i.e., Oj.H = Oi.H. This represents an “in-place” update

of the object.

3. Shadow Updates: The old object is removed, and the new object has a new

handle, i.e., Oj.H 6= Oi.H

A client to a data store needs to “learn” about all the digital objects in R that

satisfy some filter predicate σ. The filter σ specifies what objects the client wishes

to learn about. Learning about object Oi may mean receiving a complete copy of

Oi and storing it locally (for reliability). Learning about Oi may mean receiving the

digital object, extracting certain attributes of interest, adding those attribute values

(together with Oi.H or Oi.N) to an index, and discarding Oi. Learning may also
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mean simply receiving the attributes of interest, and not the full object. The client

also has a “forget” operation for Oi that undoes the action performed when Oi was

learned.

Given this framework, we can now define the goal of an awareness scheme: when-

ever a store creates a new object Oi that satisfies the filter of a client, that client must

(at some not-too-distant future time) learn about Oi. Whenever a store removes an

object Oi that satisfied the filter of a client, that client must forget Oi.

In closing this section, we note that in general, there are two types of handles:

semantic and arbitrary. By looking at a semantic handle we may be able to infer

something about one or more of the attributes of the identified digital object. For

example, if handles are strings of the form site.id, then from Oi.H we can determine

Oi.S. An arbitrary handle conveys no information when examined by anyone other

than the store that generated it. For the awareness problem, two types of semantic

handles are of interest:

• Sequential handles: the lexicographical order of handles determines the order

in which their digital objects were created. Thus, if O1.H < O2.H, we know

that object O1 was created (or last modified) before O2. (Note that sequential

handles cannot be used with in-place updates as defined above, since a modified

object must keep its old handle.)

• Content-sensitive handles: Two digital objects O1 and O2 (and all their at-

tributes) are identical if and only if their handles O1.H and O2.H are identical.

In this case, we can detect duplicate objects simply by checking their handles.

Similarly, if a store modifies an object in any way, its handle will change, mak-

ing detection of the change easier. (Again, content-sensitive handles cannot be

used with in-place updates.)

In Section 5.5 we discuss how sequential or content-sensitive handles can be used for

awareness.
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5.3 Related Work

The awareness problem is related to the problem of maintaining database replicas.

Snapshots as a means of updating replicas were first introduced in [1]. The Differential

Refresh Algorithm updates a previous snapshot by using a log [51]. Recent work in

data warehousing improves the efficiency of these algorithms [45].

Remote file comparison algorithms are also related to the awareness problem.

These algorithms attempt to locate disagreements between two or more large remote

data files [55]. A class of algorithms that use randomized signatures to compare

remote file copies is presented in [6]. The difference between these algorithms and

our work is that they operate on a fixed set of pages, rather than with object deletion

and creation. They also assume that few pages (objects) differ, while our algorithms

do not make this assumption.

A related problem is the deployment of programs over a network. Current solu-

tions use a repository that maintains the master copy of the application code. Remote

nodes check the central node periodically for updates to the master copy. In case of

an update, the remote node replaces its local copy with the updated application.

Commercial software that solve this problem includes Marimba [54], NetDeploy [58],

and BackWeb [5]. Although solutions to the awareness problem are solutions to the

program deployment problem, there is a significant difference in scale. Program de-

ployment solutions use file granularity and assume that the “master copy”contains a

relatively small number of files.

5.4 The Client-Store Design Space

The performance and complexity of an awareness mechanism very much depends on

how the store interacts with the client. In this section we briefly discuss the possible

store-client interaction modes and parameters.

Push vs. Pull. Either the client or the store can be responsible for keeping the

client up to date. With the push model, the data store is responsible for notifying the
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client when changes have occurred. With the pull model, it is the client’s responsibility

to query the data store for the changes. With a hybrid hint-pull model, the client

is still responsible for requesting changes, but the store can independently provide a

“hint” to the client that it is time to make a query.

A push model simplifies the design of the client since the client only needs to

wait for changes. In addition, network traffic may be reduced since messages are

sent only when there are indeed changes. On the negative side, with a push model,

the store needs to know the identity of all clients, and must make sure that they

receive the changes. A second problem was evident in the TULIP experiment, in

which Elsevier Science distributed science and engineering journals to nine universities

through the Internet [10]. The TULIP project initially used a push strategy, based

on the assumption that all universities would be able to start receiving documents

within the same time frame and that there would be enough storage space available

at the universities to receive the information. However, these assumptions did not

hold in practice and during the course of the project the strategy was changed to a

pull model. A pull model, in contrast, has complementary characteristics: the store

is simpler, and the client needs to do more work.

Stateful vs. stateless stores and clients. Data stores can be either stateful or

stateless with respect to clients. A stateful store saves information concerning what

objects clients have learned about. The information can be on a client per client

basis, or it can be global. For instance, the store may remember the timestamp of

the latest object seen by each client, or it may simply remember a single timestamp,

that of the latest object seen by all clients. In the latter case, a client may receive

duplicate information.

In a stateful store, the state can be persistent or volatile. If the state is volatile,

then a failure can destroy the information, in which case clients will have to use

some other awareness scheme. For example, if the store loses the latest timestamp

information, clients will have to learn about all objects in the store (many not for the

first time), instead of just the new ones.

If the store is stateless, then each client can save the state of its interaction with
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the store. For example, each client can remember the largest object timestamp it has

seen. When it pulls updates from the store, it can ask for objects with a timestamp

greater than this one.

Cognizant Clients and Sources. A cognizant store knows the identities of all

its clients. It can use this knowledge to authorize pull requests from clients, or to

decide what clients to push information to. A stateful store must be cognizant, but a

stateless store need not be. An http server is an example of a non-cognizant, stateless

store.

Although it may sound surprising, clients may or may not be cognizant of the

stores they access. A Web crawler, for example, does not necessarily have a list

of stores to access. Instead, it performs source discovery by examining the links in

existing objects (e.g., URLs), and then by contacting the appropriate stores for the

web pages.

Number of Clients per Data Store. The ratio of the number of stores to the

number of clients is a parameter that strongly affects the performance of the various

awareness schemes. If a store serves many clients, it may be hard for the store to

keep state information on a client per client basis, forcing the use of a less effective

awareness scheme. Also, the frequency of pushing or pulling may have to be reduced.

A client may have to interact with more than one store if, for instance, it is building

an index over multiple collections. If the stores use different awareness schemes, then

the client must be prepared to run the different protocols. The unifying algorithm

we present next, UNI-AWARE, may actually be a convenient framework for such a

client to coordinate the different interaction styles.

5.5 The UNI-AWARE Algorithm

In this section we present UNI-AWARE, a unified awareness algorithm that “covers”

known schemes. Casting all schemes in this same framework makes it possible to

clearly see their differences and strengths. In Section 5.6 we present an enhanced
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version of UNI-AWARE.

Figure 5.1 presents Algorithm UNI-AWARE. We stress that the pseudo-code in

the figure is a logical explanation and not necessarily the best implementation of the

algorithm. In the code, all functions prefixed with “Store” run on the data store,

while functions prefixed with “Client” run on the client; however, these functions can

be started remotely through remote procedure calls.

func Store UniAware(func σpre, func σpost, func Compress ):
iobj = σpre( S ); // S contains all data store objects
cobj = Compress( iobj );
vectorstore = σpost( cobj );
return vectorstore;

func Client UniAware(func Client σpre, func Client σpost,
func Store σpre, func Store σpost,
func Compress, func Decompress ):

iobj = Client σpre( C ); //C has all objects the client has learned about
cobj = Compress( iobj );
vectorclient = Client σpost( cobj );
vectorstore = Store UniAware( Store σpre, Store σpost, Compress );
Learnobj= vectorstore - vectorclient;
ForgetObj = vectorclient - vectorstore;
NewObjs = Decompress( LearnObj );
Learn NewObjs;
OldObjs = Decompress( ForgetObj );
Forget OldObjs;

Figure 5.1: UNI-AWARE Algorithm

Algorithm UNI-AWARE uses six different Custom Functions; an instantiation of

these functions tailors UNI-AWARE to execute a particular awareness instance (e.g.,

timestamps, signatures). A custom function takes as input a list of elements, that

we call a vector, performs some operation on those elements and constructs another

vector. We will now discuss the six functions.
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The Compress() function receives a vector of digital objects and returns a vector of

“compressed” objects. Intuitively, the compressed version of an object is a summary

containing all that is necessary for detecting changes under a particular scheme. Two

examples of valid compression are: a function that returns the LZW compression of

a object [47], and a function that returns a pair < object handle, update time >.

After a change is detected, the client may need to access the changed or new object

(e.g., to make a replica). For this it uses the Decompress() function, an inverse of

Compress. This function receives a vector of compressed objects and returns a vector

of objects or object handles. In our example above, the first decompression function

would apply the LZW decompression algorithm, which will return the object itself. In

the second example, Decompress would be a function that returns the object handle.

The store pre-selection function, Store σpre(), is used to eliminate from consider-

ation objects in which the client has no interest. For example, in the CS-TR environ-

ment, a client may indicate interest only in objects containing the word “database.”

The store post-selection function Store σpost is used to eliminate from consideration

objects the client has already learned about, e.g., those with a timestamp greater

than some value.

In the UNI-AWARE Algorithm, we conclude that an object needs to be forgotten

when we do not receive its compressed version from the data store that sent the object

originally. Since in this case the store did not apply its pre and post filtering function

on this missing object, the client must check if it was interested in the original object

(otherwise, it did not learn about it, so there would be no need to forget it). For

this purpose it uses functions Client σpre() and Client σpost(), which are analogous

to those on the store side.

A cycle in the awareness process starts with a call to Client UniAware(). If

we are using the pull model, the client makes this initial call; if we we are using

a push model, the store remotely invokes this call at the client. (With the push

model, the call can be initiated periodically, or can be triggered by an update to

the store.) First, the Client UniAware() function generates a vector of compressed

objects, vectorclient, representing those objects the client has learned about in the

past. (Keep in mind that this is a conceptual description; for instance, the client may
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simply cache vectorclient so it does not have to recompute it.)

Next the client will ask the data store to generate, in a similar fashion, the

vectorstore. This vector is sent to the client which compares it to its own. The

objects represented by vectorstore but not in vectorclient are the ones the client must

learn about. Those represented in vectorclient but not in vectorstore are the ones the

client must forget. Finally, the client decompresses the two difference sets to obtain

handles for the objects that need to be learned or forgotten.

In Figure 5.2 we present a simple UNI-AWARE example. The objects at the

store are shown in the top left. Let us also assume the client has built an object

cache, and its contents are shown in the top right. Let us assume that the client is

interested in all objects (Store σpre() and Client σpre() always evaluate to true), and

that it is not possible to know from compressed objects if they have been learned

by the client (Store σpost and Client σpost always return true). When UNI-AWARE

runs, the vectorclient and vectorstore vectors are computed as shown in the figure,

assuming that an object is compressed into its handle and some attribute C. When

vectorstore is sent to the client, the client finds the handles of the inserted objects

by performing vectorstore − vectorclient, and the handle of the deleted objects from

vectorclient − vectorstore. The update of the object with title “Paper2” generates a

forget operation for the old version followed by a learn operation of the new version.

(We can optimize the algorithm to detect these deletion-insertion actions on the same

object, in order to do a single modify operation. However, we do not discuss this in

this chapter.)

Data Store

Handle Title

TR1 Paper 1
TR2 Paper 2’
TR4 Paper 4

Client

Handle Title

TR1 Paper 1
TR2 Paper 2
TR3 Paper 3

vectorstore : TR1 C1 TR2 C2’ TR4 C4

vectorclient : TR1 C1 TR2 C2 TR3 C3

LearnObj = vectorstore − vectorclient : TR2 C2’ TR4 C4

ForgetObj = vectorclient − vectorstore : TR2 C2 TR3 C3

Figure 5.2: Example of the UNI-AWARE Algorithm
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In the following subsections we explore different alternatives for the Custom Func-

tions. By changing the compression, decompression and post-selection functions we

will produce four families of strategies: snapshot algorithms, timestamp algorithms,

log-based algorithms, and signature algorithms. The pre-selection functions do not

change in these instances. They are used only to support client filtering, and will not

be included in our discussion.

5.5.1 Snapshot Algorithms

The Snapshot Algorithms use the simplest definitions of the Custom Functions. They

only require that a store produce a snapshot, i.e., a vector of all objects at the store.

We present two instances in this family.

The Simple Snapshot Algorithm uses the Customs Functions in Figure 5.3. These

Custom Functions simply return their argument without change. This implies that

the store sends all of its objects to the client (whether they changed or not) in order

to update it. This is clearly wasteful, but on the positive side, the algorithm requires

very little functionality from the store, and could be useful for small stores.

func Compress ( objvector ):
return objvector;

func Store σpost( objvector ):
return objvector;

func Decompress ( objvector ):
return objvector;

func Client σpost( objvector ):
return objvector;

Figure 5.3: Custom Functions for the Simple Snapshot Algorithm

The Handle Snapshot Algorithm only works with versions or shadow updates (no

in-place updates), and when handles of deleted objects are not reused. (Content-

sensitive handles are a special case of this scenario.) In this case, the snapshot need

only include the handles of all store objects. When compared with the previous

snapshot, a new handle in the current snapshot will indicate an insertion, while a

missing handle will indicate a deletion. The Customs Functions for this algorithm

are given in Figure 5.4. (Recall that O.H is the handle of object O.)
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func Compress ( objvector ):
result = [ ];
for obj in objvector:

result += obj.H;
return result;

func Store σpost( objvector ):
return objvector;

func Decompress ( objvector ):
return objvector;

func Client σpost( objvector ):
return objvector;

Figure 5.4: Custom Functions for the Handle Snapshot Algorithm

The Handle Snapshot Algorithm can be extended to include other object at-

tributes in the compressed vector, in addition to just the handle. The additional

attributes can then help us detect modifications, in case the handle is not sufficient.

This variation is actually the Handle-Signature Algorithm described later on.

5.5.2 Timestamps

If timestamps at the store can be used to order objects by their insertion or modifi-

cation time, then we can reduce the number of objects sent to the client. The first

instance that uses this idea is the Timestamp Algorithm, whose functions appear in

Figure 5.5. This instance only works with no-delete stores. A store is no-delete if

it never removes objects. Modifications are allowed, either with versions or in-place.

(Shadow modifications are not allowed since the old versions cannot be removed.)

In the Timestamp Algorithm, the store only includes objects with a timestamp

greater than Tm, a marker timestamp. This marker was computed in the previous

invocation of the algorithm, and tells us what objects the client has already learned

about. The code in Figure 5.5 computes the maker timestamp for the next invocation,

T ′
m, in two places. This is not really needed: the client can compute T ′

m and pass it

to the store as part of function Store σpost, or the store can compute it and save it

for the next iteration.

In Figure 5.6 we present a sample execution of the Timestamp Algorithm. In
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func Compress ( objvector ):
return objvector

func Store σpost( objvector ):
T ′

m = max timestamp in objvector

return objects O with O.TS > Tm

func Decompress ( objvector ):
T ′

m = max timestamp in objvector

return objvector;
func Client σpost( objvector ):

return [ ];

Figure 5.5: Custom Functions for Timestamp Algorithm

this figure, we can see that the client has learned about all the objects except the

one with handle TR3. Thus, the marker computed in the last invocation is T2. The

algorithm starts with the store creating vectorstore with all objects with timestamps

greater than T2. The client then compares this vector to its own version to discover

that it is missing TR3. In the process, the next marker is computed to be T3.

Data Store
Handle Title Timestamp

TR1 Paper 1 T1
TR2 Paper 2 T2
TR3 Paper 3 T3

Client
Handle Title Timestamp

TR1 Paper 1 T1
TR2 Paper 2 T2

Marker = T2
vectorstore : TR3 Paper3 T3
vectorclient : empty
LearnObj = vectorstore − vectorclient : TR3 Paper3 T3
ForgetObj = vectorclient − vectorstore : empty
Next Updated Marker = T3

Figure 5.6: Example of the Timestamp Algorithm

A variation of the Timestamp Algorithm in which we do not ship full objects is

the Handle-Timestamp Algorithm. (We do not show its Custom Functions.) Here the

Compress function extracts the handle and the timestamp of each object. (If handles

are sequential, see Section 5.2, handles can also play the role of timestamps) The

timestamps are used as in the Timestamp Algorithm to eliminate objects of which

the client is already aware. When the client compares vectorstore and vectorclient, it
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compares both the handles and timestamps. The benefit with respect to the Handle

Snapshot Algorithm, is that now we can cope with in-place modifications or handle

reuse, because the timestamp lets us detect modifications when the handle does not

change. In summary, the Handle-Timestamp Algorithm works with no-delete stores

and either version or in-place updates.

The reason we restrict the Timestamp and the Handle-Timestamp Algorithms to

no-delete stores is that they cannot handle deletions. The problem with deletions

is that after an object is removed, the data store does not keep any record of it.

Therefore, the data store cannot tell the client to delete it.

There are two approaches for handling deletions. In the first approach, the client

performs lazy deletions. That is, the client keeps all deleted entries until an error

occurs, or until the client runs an algorithm, such as the Snapshot Algorithm, that

can handle deletions. An error occurs, for example, if a user searches the client index

to get the handle for an object of interest, and then goes to the store to look for that

deleted object. In such an event, the user can ask the client to delete the index entry

for the deleted object.

The second approach is for the data store to keep tombstones for deleted objects.

When using tombstones, for each deleted object Di, the store inserts a tombstone

object D′
i with the same handle as Di (D′

i.H = Di.H), and an attribute indicating

that D′
i is a tombstone. The timestamp of D′

i is its creation time (i.e., Di’s deletion

time). The only change to the Timestamp Algorithm (or to the Handle-Timestamp

Algorithm) is that when the client learns of the creation of tombstone object D′
i, it

forgets Di.

The disadvantage of using tombstones is that they take up space in the data store.

However, tombstone space D′
i can be reclaimed when the store knows that all clients

have learned of D′
i. This occurs when all client marker timestamps are greater than

D′
i.TS. (This requires knowledge of all clients by the store.) Alternatively, the data

store can unilaterally discard all tombstones older than a certain time marker Tcut.

If a client then uses a marker Tm smaller than Tcut, the request fails and the client

must use a simple algorithm such as the Snapshot Algorithm.
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5.5.3 Logs

A common metadata structure kept by stores (mainly for crash recovery) is a log.

The log is a sequence of records that registers all the update activities in the database

[75].2 Each log record is conceptually of the form < LSN, H, A,B >, where LSN is

a unique sequential number, H is the handle of the affected object, A is the action

performed (e.g. update, deletion, insertion), and B is some information about the

new object body (such as a delta, the new object body).

There are essentially two ways to use logs. The simplest is to use the LSNs as

timestamps for objects. That is, for each object with handle O.H, we can use the

largest LSN in log records that contain O.H as its “timestamp.” For example, say

that the record with LSN = 21 registers the creation of object O1.H, that record with

LSN = 35 registers its modification, and there are no other records with O1.H. Then

the number 35 is O1’s current timestamp. The Timestamp or the Handle-Timestamp

Algorithms can be used directly under this interpretation of timestamps.

A second way to use logs is to have the store report changes by shipping the log

records that describe the changes. This gives us the Log Algorithm, whose Custom

Functions are given in Figure 5.7. A marker log sequence number Lm (computed in

the previous invocation) tells us what records need to be shipped (analogous to Tm

in the Timestamp Algorithm). When the client gets a new NewObjs vector to learn,

it replays the log actions (in LSN order) and takes appropriate actions on its local

state. For example, if a log record says object O1 was deleted, then the client forgets

O1. If the record says some text was inserted into O2, then the client may index the

new text.

The Log Algorithm requires substantial sophistication on the part of the client,

since it needs to understand the store actions. Thus, the algorithm may only be

applicable in limited situations, but in those cases it can effectively reduce the amount

of data that must be sent to the client. As with tombstones in the Timestamp

Algorithm, there is also the problem of limiting the size of the log. Similar techniques

2For our purpose, we will consider a log at the level of objects. If the system provides a lower
granularity log, we can simulate an object-level log by coalescing several log records. Similarly, we
will ignore log records that are not related to updates in objects.
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func Compress ( objvector ):
result = [ ];
for obj in objvector:

result + = [obj.H, obj.H log records];
return result;

func Store σpost( objvector ):
discard all log records LSN ≤ Lm

if object has no log records left
remove object from objvector

L′
m = max LSN in objvector

return the new objvector;

func Decompress ( objvector ):
L′

m = max LSN in objvector

return objvector;
func Client σpost( objvector ):

return [ ];

Figure 5.7: Custom Functions for the Log Algorithm

to those described in Section 5.5.2 can be used.

5.5.4 Signature Algorithm

The Timestamp and Log Algorithms use metadata (timestamps, log records) to re-

duce the amount of data sent to the client. As discussed in the Introduction, it is

difficult to consistently manage timestamps (or logs) as stores fail or objects migrate

from one computer to another. An algorithm like the Simple Snapshot does not rely

on metadata for change detection, and is hence much more robust in the face of op-

erating system changes or failures. In this section we enhance that algorithm so that

all full objects need not be sent to the client.

The idea is to send, for each store object, its handle and a signature that “sum-

marizes” its content. A signature is a token that (i) has a high probability of being

unique for each object in the data store, and (ii) changes when the content of the ob-

ject changes. Several functions comply with these requirements including Cyclic Re-

dundancy Checks (CRC) and checksums. The probability that a signature is unique

for a given object content can be made arbitrarily low by using more bits in the signa-

ture. With say 128 bits, the probability that two objects will have the same signature
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is insignificant, so they can be used safely for detecting changes (unless one is the

type of person that worries about our Sun going supernova). Signatures do not have

to be recomputed each time they are needed; instead they can be cached. However,

the cache need not be reliable, since if the signatures are lost or corrupted, we can

always re-generate them by re-applying the signature algorithm to all the objects.

Incidentally, if handles are content-sensitive (see Section 5.2), then we do not need

signatures, as handles can play the role of signatures.

Timestamps also have the two properties mentioned in the previous paragraph,

so they can be used as signatures (assuming the system generates unique timestamps

as each object is created or modified). However, with timestamps we do need system

support since they cannot be inferred from the content, so in this sense they are less

robust than content-based signatures.

The Custom Functions for the Simple Signature Algorithm are presented in Figure

5.8. The compression function produces a vector with tuples containing the object

handle and signature. This vector is sent to the client, who compares it to its own

vector to detect changes. For new or modified objects, the client uses the handle to

request the object so it can learn about it. In Figure 5.9 we present an example for

the Simple Vector Algorithm.

func Compress ( objvector ):
result = [ ];
for obj in objvector:

result + = [obj.H,signature(obj)];
return result;

func Store σpost( objvector ):
return objvector;

func Decompress ( objvector ):
result = [ ];
for obj in objvector:

result + = obj.H;
return result;

func Client σpost( objvector ):
return objvector;

Figure 5.8: Custom Functions for the Signature Algorithm

Even though the Simple Vector Algorithm is more efficient than the Simple Snap-

shot Algorithm, it still must send many signatures to the client, one for each object

in the store. In Section 5.6 we discuss improvements to reduce this cost.
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Data Store

Handle Title

TR1 Paper 1
TR2 Paper 2’
TR4 Paper 4

Client

Handle Title

TR1 Paper 1
TR2 Paper 2
TR3 Paper 3

vectorstore :
TR1 signature(Paper1)

TR2 signature(Paper2’)

TR4 signature(Paper4)
vectorclient :
TR1 signature(Paper1)

TR2 signature(Paper2)

TR3 signature(Paper3)
LearnObj = vectorstore − vectorclient :
TR2 signature(Paper2’)

TR4 signature(Paper4)
ForgetObj = vectorclient − vectorstore :
TR2 signature(Paper2)

TR3 signature(Paper3)

Figure 5.9: Example of the Signature Algorithm

5.5.5 UNI-AWARE Summary

The following table summarizes the UNI-AWARE options we have discussed.

Algorithm Bytes Transmitted Need
Metadata

Limitations

SimpleSnapshot R + DN No None
Handle Snapshot R + LN No No in-place updates; no

handle reuse
Timestamp R + DU Yes no-delete store;

no shadow updates
Handle-Timestamp R + 2LU Yes no-delete store;

no shadow updates
Handle-Timestamp R + 2LU Yes None
with Tombstones
Log R + 2LU Yes None
Signature R + 2LN No May miss

updates (arbitrarily
low probability)
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The “Bytes Transmitted” column gives a very rough estimate of the communi-

cation cost per invocation. For this, we assume that the client must first send R

bytes to the store, that there are a total of N objects, each of size D, that the client

is interested in, and that of these, U have been inserted, deleted or updated since

the previous invocation. We also assume that timestamps, LSNs, log records and

signatures are all L bytes long. The two other columns in the table indicate if the

algorithm requires system-supported metadata, and if there are any logical (i.e., not

performance related) limitations.

5.6 Distributed UNI-AWARE Algorithm

The Signature Algorithm is desirable because it does not use system meta-data such

as timestamps or logs. However, it does send substantial data to the client, even if

few changes occurred. In this section we present a distributed algorithm, DIST-UNI-

AWARE, that reduces this cost. We also present this algorithm as a unified algorithm

that can be tailored to a variety of specific instances.

Intuitively, DIST-UNI-AWARE starts by sending a single “compressed” version

of the objects in the store (as opposed to a compressed version of each object). If

this summary (e.g., signature) matches what the client has, then the client knows

immediately that there were no changes and no further messages are needed. If there

were changes, the client asks the store to split the objects into groups and to send it

a compressed summary of each group. The process then repeats itself by having the

client check if the objects in each group have changed. Figure 5.10 presents Algorithm

DIST-UNI-AWARE.

In order to form groups of objects, both the store and the client agree on a con-

ceptual ordering of the objects. For example, the objects can be ordered by their

handle or their title. Given this ordering, the store can describe a particular group

(subset) by the minimum and maximum objects according to the ordering. In ad-

dition, since the store usually wishes to describe multiple groups, it is convenient

to include in each group descriptor the maximum object of the previous group, and

the minimum object of the next group. Thus, in algorithm DIST-UNI-AWARE the
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func Store DistUniAware(. . . custom functions. . . ):
iobj = σpre( S ); // S contains all objects in the data store
cobj .GroupInfo.Min = min(iobj .H);
cobj .GroupInfo.Max = max(iobj .H);
cobj .GroupInfo.NextMin = NULL;
cobj .GroupInfo.PrevMax = NULL;
cobj .Data = Compress( iobj );
vectorstore = [σpost( cobj )];
return vectorstore;

func Store VectorAs( GI, . . . custom functions. . . ):
iobj = σpre( S ); // S contains all objects in the data store
vectorstore = Group(iobj , GI);
return vectorstore;

func Client DistUniAware(. . . custom functions. . . ):
vectorstore = Store DistUniAware(. . . custom functions. . . );
Client ProcessVector( vectorstore, . . . all custom functions. . . );

func Client VectorAs( GI ):
if GI.Min not in σpre(C): // C contains all objects in the client

Learn GI.Min;
if GI.Max not in σpre(C):

Learn GI.Max;
Forget handles in σpre(C) inside interval (GI.PrevMax...GI.Min);
Forget handles in σpre(C) inside interval (GI.Max...GI.NextMin);
iobj = objects in σpre(C) with handles in interval [GI.Min...GI.Max];
cobj .Data = Compress( iobj );
cobj .GroupInfo = GI;
vectorclient = σpost( cobj );
return vectorclient;

func Client ProcessVector( vectorstore, . . . custom functions. . . ):
for elemstore in vectorstore:

vectorclient = Client VectorAs( elemstore.GroupInfo );
if (elemstore.Data 6= vectorclient.Data):

if elemstore.GroupInfo.Min == elemstore.GroupInfo.Max:
Learn elemstore.GroupInfo.Min;

else:
vstore=Store VectorAs(elemstore.GroupInfo,. . . custom functions. . . );
Client ProcessVector(vstore,. . . custom functions. . . );

Figure 5.10: DIST-UNI-AWARE Algorithm
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store will send to the client a vector of group descriptors, V G. Each descriptor V G[i]

applies to a group of store objects and contains two attributes: V G[i].Data, the com-

pressed objects (e.g., their combined signature), and V G[i].GroupInfo, the bounds

record. A V G[i].GroupInfo = I record contains in turn I.Min, an identification

(e.g., handle) of the minimum object in group V G[i]; I.Max, an identification for the

maximum object; I.PrevMax, the maximum of the previous group; and I.NextMin,

the minimum of the next group.

Algorithm DIST-UNI-AWARE uses the following Custom Functions. The pre-

selection functions work as before, except that for simplicity we now have a single

function σpre used at both the store and the client. The Compress() function receives

a vector of digital objects and returns a single “compressed” data item that represents

all the objects in the vector. There is no Decompress function; instead there is

Group() function that packages a set of objects into groups of objects. Finally, the

post-selection function, σpost operates on group descriptors (as opposed to a vector of

objects).

A cycle in the awareness process starts with a call to

Client DistUniAware. The client requests to the data store a group vector by calling

the function Store DistUniAware(). The data store produces and sends to the client

an initial group vector that spans all of its objects. Then, the client generates a vector

equivalent to the one sent by the data store. An equivalent vector is a vector that

has the same grouping information (i.e. boundaries) as another. When generating an

equivalent vector, the client may need to learn about an object when it does not have

one of the group boundaries, or when forget objects that are outside the boundaries

of the group and the boundaries of the adjacent groups. The client’s equivalent vector

is compared with the vector sent by the data store. If their Data attributes are equal,

the client concludes that the group of documents has not changed, and no more

processing is needed. On the other hand, if they are different, the client asks the data

store to split the group vector into multiple vectors, and proceeds recursively with

the same algorithm. The recursion stops when groups have only one object. At this

stage, the client can decide if it needs to learn about the object by comparing the

data store compressed version of the object with its own compressed version.
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5.6.1 Hierarchical Signatures

In this section we describe a DIST-UNI-AWARE instance, the Hierarchical Signatures

Algorithm, that uses signatures of objects in a group.

func Group( objvector, GI ):
shandle = sorted list of handles of objvector;
delete from shandle all handles < GI.Min;
delete from shandle all handles > GI.Max;
// split divides list shandle in two equal parts
(s1, s2) = split( shandle );
vlow.GroupInfo.PrevMax = GI.PrevMax;
vlow.GroupInfo.Min = GI.Min;
vlow.GroupInfo.Max = max(s1);
vlow.GroupInfo.NextMin = min(s2);
lowdata=objects of objvector with handles in s1;
vlow.GroupInfo.Data=Compress(lowdata);
vhigh.GroupInfo.PrevMax = max(s1);
vhigh.GroupInfo.Min = min(s2);
vhigh.GroupInfo.Max = GI.Max;
vhigh.GroupInfo.NextMin = GI.NextMin;
highdata=objects of objvector with handles in s2;
vhigh.GroupInfo.Data=Compress(highdata);
return [vlow, vhigh];

func Compress (objvector):
return signature(objvector);

func Client σpost(groupvector):
return groupvector;

func Store σpost(groupvector):
return groupvector;

Figure 5.11: Custom Functions for the Hierarchical Signature Algorithm

The algorithm uses the Custom Functions of Figure 5.11. The compression func-

tion produces a single signature from a vector of digital objects. The grouping func-

tion receives a set of objects and information about a group, and produces two vector

groups each with half the content of the original group. Digital objects are grouped
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together based on the value of their handles.

Figure 5.12 presents an execution example of the Hierarchical Signatures Algo-

rithm. In this example, the client has learned about all the digital objects in the data

store, with the exception of the object with handle TR9 that was just inserted, and

TR6 which was updated; the client also needs to forget the object with handle TR5

that was deleted. In the first iteration of the algorithm, the data store groups all

digital objects in a single group, and sends a vector containing the group information

and the signature of < Paper1...Paper9 > to the client. This group information is

shown as the first four boxes in vectorstore under Round 1. It includes the handle of

the last object in the previous group (null because there is no previous group in this

case), the handle of the first object in the group (TR1), the handle of the last object

in the group (TR9), and the handle of the first object in the next group (also null).

Next, the client uses the received group information to build the equivalent vector,

vectorclient, with all digital objects it has learned about with handles between TR1

and TR9. As the client does not have the object with handle TR9, it can immediately

conclude that it needs to be learned. Assuming the client does so, it can then construct

the equivalent vector, and notices that the signature in it (the data component) differs.

Thus, the client starts Round 2 by requesting the data store to split the initial group.

In Round 2, the data store forms two group vectors and sends them to the client.

With the grouping information of these vectors, the client can immediately conclude

that TR5 needs to be forgotten. (This is because TR5 is in between the maximum

handle of the first vector and the minimum handle of the second vector.) The client

forgets about TR5 and builds the two equivalent vectors. This time, one of the group

vectors is the same as the vector sent by the store and no more processing is needed.

However, as the other vector is different, the client starts Round 3 by requesting the

data store to subdivide it. In Round 3, the store sends information on group TR6,

TR7, and on group TR8, TR9. The second group matches what the client has, but the

store is asked to further split the first group. The store does so, and in Round 4 sends

individual signatures for TR6 and TR7. When the client receives the information on

these atomic groups, it proceeds as with UNI-AWARE and concludes that it needs

to forget the old version of TR6 and learn about the new version of TR6.
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Data Store

Handle Title
TR1 Paper 1
TR2 Paper 2
TR3 Paper 3
TR4 Paper 4
TR6 Paper 6’
TR7 Paper 7
TR8 Paper 8
TR9 Paper 9

Client

Handle Title
TR1 Paper 1
TR2 Paper 2
TR3 Paper 3
TR4 Paper 4
TR5 Paper 5
TR6 Paper 6
TR7 Paper 7
TR8 Paper 8

Round 1:
Vectors from Store:
NULL TR1 TR9 NULL s(Paper1..Paper9)

Equivalent Vectors in Client:
NULL TR1 TR9 NULL s(Paper1..Paper9)

Client concludes:
LEARN TR9 and start round 2 as s(Paper1..Paper9) 6= s(Paper1..Paper9)
Round 2:
Vectors from Store:
NULL TR1 TR4 TR6 s(Paper1..Paper4)
TR4 TR6 TR9 NULL s(Paper6’..Paper9)

Equivalent Vectors in Client:
NULL TR1 TR4 TR6 s(Paper1..Paper4)
TR4 TR6 TR9 NULL s(Paper6..Paper9)

Client concludes: FORGET TR5 and start round 3 with the second vector as
s(Paper6’..Paper9) 6=s(Paper6..Paper9)
Round 3:
Vectors from Store:
TR4 TR6 TR7 TR8 s(Paper6’,Paper7)
TR7 TR8 TR9 NULL s(Paper8..Paper9)

Equivalent Vectors in Client:
TR4 TR6 TR7 TR8 s(Paper6,Paper7)
TR7 TR8 TR9 NULL s(Paper8..Paper9)

Client concludes: Start round 4 with the first vector
as s(Paper6’,Paper7) 6= s(Paper6,Paper7).
Round 4:
Vectors from Store:
TR4 TR6 TR6 TR7 s(Paper6’) TR6 TR7 TR7 TR8 s(Paper7)

Equivalent Vectors in Client:
TR4 TR6 TR6 TR7 s(Paper6) TR6 TR7 TR7 TR8 s(Paper7)

Client concludes: LEARN TR6

Figure 5.12: Example of the Hierarchical Signature Algorithm
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5.6.2 Hierarchical Timestamps

The Hierarchical Timestamp Algorithm is similar to the Hierarchical Signature Algo-

rithm, except that the “signature” of a group of objects is now the largest timestamp

of the group. If none of the objects in the group has been modified, then the group

timestamp (i.e., the maximum timestamp) will match the group timestamp stored at

the client. Otherwise the client will request that the group be split. We do not show

the Custom Functions for this algorithm since they are very similar to those of the

Hierarchical Signature Algorithm.

Timestamps are more effective than signatures for detecting changes because in

that case the timestamps of different objects will never match. Signatures of different

objects could match, but the probability can be made arbitrarily small by making the

signatures large (e.g., 128 bits). Of course, as we have discussed, timestamps depend

on the correct operation of the underlying operating or file system.

5.6.3 Performance Issues

The performance of the DIST-UNI-AWARE Algorithms depends very much on the

number of new or changed objects between invocations. If there are no changes, only

one round is required. If there is a single change, it takes roughly log2 N rounds,

where N is the number of digital objects. If there are two changes, we still require

log2 N rounds, but we may need to send twice as much data. As the number of

changes increases, we end up having to split more and more groups. Eventually, with

enough changes, every single group must be split, and the cost is much higher than

if we had just sent all object signatures (or timestamps) outright.

There are many enhancements that can improve the performance of the algorithm

as we have presented it. For example, groups can be split by factors of f instead of

2, reducing the number of rounds to logf N . This means that the store will send

information for f groups at one time, but the cost of this may not be much higher for

relatively small values of f . The initial message may also include f groups, instead

of a single group as in DIST-UNI-AWARE.

Another improvement is to have the client send information on its objects when it
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requests that a group be split. To illustrate, let us consider once again the example of

Figure 5.12. At the end of Round 1, the client asks the store to split the initial group

into two. Instead, the client could split its objects into two groups, TR1 through

TR4, and TR5 through TR9, and send signatures for them. In this way, the store

could find out that objects TR1 through TR4 exist unchanged in the client, so it then

splits the other group into two, thereby saving one round. (That is, the store goes

directly to Round 3.)

Another possible optimization is to attempt to “cluster” the changed objects into

small groups. For example, suppose that most of the changes at the store are appends

of new objects. Then, to group the objects, we first sort them by timestamp (as

opposed to by signature, as done by function Group in Figure 5.11). Thus, most

changed objects will be contiguous as we break them into groups, implying that with

little effort we can pinpoint the few changed groups, and for each send more detailed

individual object signatures. This is much more effective that the original scheme,

where changed objects are randomly distributed across the sorted objects. It is also

important to notice that even though this scheme uses timestamps, its correctness

does not depend on correct timestamps. That is, if the timestamps are incorrect (and

even different than those the client has for the same object), the algorithm will still

work because it detects differences using signatures, not timestamps. Timestamps

are only used as “hints” for clustering the objects to reduce the data exchanged.

Figure 5.13 illustrates this idea.

In Figure 5.13, the contents of the store and client are shown at the top, with the

timestamps indicating when objects were last modified. Initially, the store orders all

its objects by timestamp, and forms the initial group with all objects. The descriptor

for the group includes the timestamps of the minimum and maximum objects. When

the client notices that the signature for this first group does not match what it has,

it asks the store to split the group. In Round 2 the store forms two groups and sends

the descriptors. Because the objects were sorted by timestamp, all the changes are

located in the second group. If that group had to be split, again we would expect

changes to be localized. (In the example,the group does not need to be split since

the algorithm terminates quickly.) In general, ordering by timestamp tends to avoid
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Data Store

Handle Title TS

TR1 Paper 1 T1
TR2 Paper 2 T2
TR3 Paper 3 T3
TR4 Paper 4 T4
TR7 Paper 7 T7
TR8 Paper 8 T8
TR9 Paper 9 T9
TR6 Paper 6’ T10

Client

Handle Title TS

TR1 Paper 1 T1
TR2 Paper 2 T2
TR3 Paper 3 T3
TR4 Paper 4 T4
TR5 Paper 5 T5
TR6 Paper 6 T6
TR7 Paper 7 T7
TR8 Paper 8 T8

Round 1:
Vectors from Store:
NULL TR1,T1 TR6,T10 NULL s(Paper1..Paper9)

Equivalent Vectors in Client:
NULL TR1,T1 TR6,T10 NULL s’(Paper1..Paper9)

Client concludes:
LEARN TR6 and start round 2 as s(Paper1..Paper9) 6= s’(Paper1..Paper9).
Round 2:
Vectors from Store:
TR1,T1 TR2,T2 TR4,T4 TR7,T7 s(Paper1..Paper4)
TR4,T4 TR7,T7 TR9,T9 TR6,T10 s(Paper7..Paper9)

Equivalent Vectors in Client:
TR1,T1 TR2,T2 TR4,T4 TR7,T7 s(Paper1..Paper4)
TR4,T4 TR7,T7 TR9,T9 TR6,T10 s(Paper7..Paper9)

Client concludes:
FORGET TR5, LEARN TR9 and no more iterations are needed as both pairs of
signatures are equal.

Figure 5.13: Example of the Clustering Technique

having to split many groups, reducing the communication traffic.

This example also illustrates another improvement. Since the store sent as end

points of the first group TR1 and TR6, it does not need to use them as end points in

subsequent rounds. Thus, in Round 2, the groups are TR2 through TR4, and TR7

through TR9. By sending these smaller groups the algorithm can terminate in Round

2.
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5.7 Discussion

In this chapter we have studied awareness mechanisms for repositories of digital ob-

jects. We have argued that it is important to cleanly separate the storage functionality

from the rest (indexing, replication, and so on), so that many and varied components

can use the stores. With such a split, it is critical to have effective awareness schemes

that can work correctly even as the objects in a store migrate from one “environment”

to another (e.g., as operating systems, file systems and hardware gets upgraded). The

signature or content-based schemes we presented are especially well suited for such a

scenario, and we believe that the performance enhancements we discussed can make

them practical.

We also believe it is instructive to view awareness schemes as variants of unifying

algorithms such as UNI-AWARE or DIST-UNI-AWARE. This makes differences in

assumptions and performance very apparent. Furthermore, such a unified view of

awareness mechanisms could be extremely important for a client that must deal with

stores that implement different schemes.



Part III

Efficient Content Access in a

Federation of Archival Repositories

136



Chapter 6

Efficient Searching in an AR

Federation

137



138 CHAPTER 6. EFFICIENT SEARCHING IN AN AR FEDERATION

6.1 Overview

A federation of ARs needs not only to preserve information for long periods of time,

but it also needs to provide access to the information. In this chapter, the focus is to

help users to efficiently find documents with content of interest across a potential set

of sources.

There are many mechanisms for searching in a federation of ARs, each with their

own advantages and disadvantages. These solutions can be classified into three cat-

egories: mechanisms without an index, mechanisms with specialized index nodes

(centralized search), and mechanisms with indices at each node (distributed search).

For example, Gnutella, a highly decentralized federation of nodes, uses a mechanism

in which nodes do not have an index and queries are propagated from node to node

until matching documents are found. This search mechanism works by flooding the

network (or a subset of it) in the hope of finding a match for a query. Although

this approach is simple and robust, it has the disadvantage of the enormous cost of

flooding the network every time a query is generated.

Centralized-search systems use specialized nodes that maintain an index of the

documents available in the federation of ARs. To find a document, the user queries

an index node to identify nodes having documents with the content of interest. These

central indices may be built with the cooperation of the nodes (e.g., Napster nodes

provide a list of available files at sign-in time) or by crawling the P2P network (as in

a web search engine). The advantages of a centralized search mechanism is efficiency

as just a single message is needed to resolve a query. However, a centralized system is

vulnerable to attack (e.g., index sites can be shut down by a court order or a hacker

attack) and it is difficult to keep the indices up-to-date.

A distributed-index mechanism, the option we will study in detail in this chapter,

maintains indices at each node. These distributed indices need to be small, so instead

of using traditional “destination” indices, we use Routing Indices (RIs) that give a

“direction” towards the document, rather than its actual location. As an illustration,

Figure 6.1 shows four nodes A, B, C, and D, connected by solid lines. The document

with content “x” is located at node C, but the RI of node A points to neighbor
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x

CBA

D

RI x-z

Figure 6.1: Routing Indices

B instead of pointing directly to C (dotted arrow). By using “routes” rather than

destinations, the index size is proportional to the number of neighbors, rather than

to the number of documents. We can reduce the size of RIs even further by using

approximate indices, i.e., by allowing RIs to give a hint (rather than a definite answer)

about the location of a document. For example, in the same figure, an entry in the

RI of node A may cover documents with contents “x,” “y,” or “z.” A request for

documents with content “x” will yield a correct hint, but one for content “y” or “z”

will not.

The techniques presented in this chapter can be applied not only to a federation

of Archival Repositories but also to more general Peer-to-peer systems (P2P). As

in our federation of ARs, in P2P systems, distributed computing nodes of equal

roles or capabilities exchange information directly with each other. These systems

represent an incredible wealth of information allowing users to exchange documents

(Freenet [25]), music files (Napster [94], Gnutella [87]), and even computer cycles

(Seti-at-home [91]). Given that a federation of Archival Repositories is a special case

of P2P systems, in the rest of the chapter we expand the problem of efficient searching

in an AR federation to efficient searching in P2P systems.

In this chapter we study options for building effective RIs, and evaluate their

performance. In particular, the contributions of this chapter are:

• We introduce Routing Indices, an efficient way of locating content in a P2P

system (Sections 6.3 and 6.4).

• We present three RIs: the compound, the hop-count, and the exponential rout-

ing indices (Sections 6.5).
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• We evaluate the performance of RIs via simulations, and find that RIs can

improve performance by one or two orders of magnitude over a flooding-based

system, and by 50-100% versus a random forwarding system (Section 6.7).

6.2 Related Work

The problem of indexing a P2P network is related to the problem of indexing a

distributed database [41]. However, algorithms for indexing distributed databases

make two fundamental assumptions that are not applicable to P2P systems: that

nodes are stable and connected most of the time, and that the number of nodes is

small.

There are several working P2P systems currently available, each with its own

“indexing” approach. Napster [94] uses centralized indices, which, as stated before,

are vulnerable to attack. Gnutella [87] does not build indices; instead, queries flood a

significant part of the network, resulting in a simple but very costly approach since just

one query can expand into hundreds of thousands of requests through the Gnutella

network. Freenet [25] uses an interesting approach to indexing. Each node builds

an index with the location of recently requested documents, so if they are requested

again, the document can be retrieved at a very low cost.

There are a number of P2P research systems (CAN [65], Oceanstore [43], CHORD

[78], Pastry [71], and Tapestry [97]) that can efficiently find documents in a P2P

network. The key differences between these systems and our approach is that we do

not mandate a specific network structure and that queries are on the content of the

documents rather than on document identifiers.

Selecting a neighbor for forwarding a query is also related to traditional routing

algorithms [80] such as Bellman-Ford [7, 24]. The major difference with our algorithms

is that standard routing algorithms are designed to transmit a packet between two

nodes through the shortest route. In our case, we need to get a “packet” from one

node to one or more nodes so that we can find the best answers to a query. Also, the

destination of a packet is not pre-defined (as in IP routing), but instead it depends

on the query contained by the packet. IP routing to multiple destinations (multicast
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algorithms) has been studied extensively (see for example [56]). However, multicast

algorithms require the creation of a relatively stable multicast tree.

The problem of selecting the best database to which to send a query was studied

as part of the GlOSS project [33, 30]. However, GlOSS assumes that we are selecting

among a set of databases, rather than among “paths” that lead to a set of databases.

Some recent work has empirically evaluated P2P systems. A survey and evaluation

of centralized-search P2P systems can be found at [95]. An evaluation and description

of the present state of Gnutella can be found at [14]. Finally, [96] focuses on search

techniques that do not use indices, although it also studies one type of “local area

index.” In such indices, a node indexes the content of nodes within “r” hops. However,

these indices are not routing indices, they are traditional indices.

6.3 Peer-to-peer Systems

A P2P system is formed by a large number of nodes that can join or leave the system

at any time and that have equal capabilities. Each node is connected to a relatively

small set of neighbors which in turn is connected to more nodes. In Figure 6.2, the

neighbors of node A are nodes B, C, and D. Note that there might be cycles in the

network (such as the one caused by the link between E and G). Each node has a

local document database that can be accessed through a local index. The local index

receives content queries (e.g., a request for documents containing the words “database

systems,” a request for documents containing a picture of the sun, etc.) and returns

pointers to the documents with the requested content.

6.3.1 Query Processing in a Distributed-Search P2P System

In a distributed-search P2P system, users submit queries to any node along with a

stop condition (e.g., the desired number of results). A node receiving a query first

evaluates the query against its own database, returns to the user pointers to any

results, and, if the stop condition has not been reached, the node selects one or more

of its neighbors and forwards the query to them (along with some state information).
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Figure 6.2: P2P Example

In turn, each of the neighbors evaluates the query in a similar fashion, returns result

pointers to the user and forwards the query to neighbors.

In Figure 6.2, Node A initially receives a query. Node A checks for local results and

sends those results to the requesting node. Then, assuming that the stop condition

has not been satisfied, node A selects node D as the best neighbor to handle the query

and forwards the query to it (dashed arrow). For nodes to be able to verify if the stop

condition has been reached, we need to include the number of results found so far

as state information in each query-forwarding message. Then D processes the query

and selects I as the best neighbor to continue handling the query. Let us assume now

that I has processed the query, but not enough results have been found to reach the

stop condition. In this case, I returns the query to D which forwards the query to

the next best neighbor (J in this case).

Queries can be forwarded to the best neighbors in parallel or sequentially. A

parallel approach yields better response time, but generates higher traffic and may

waste resources. In this chapter, we focus on a sequential forwarding of the queries.

6.4 Routing indices

In this section we present an example of how the compound RI (CRI) works. Later,

in Section 6.5 we present two other RIs: the exponential RI and the hop-count RI.

The objective of a Routing Index (RI) is to allow a node to select the “best”
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Documents with topics:
Path # docs DB N T L
B 100 20 0 10 30
C 1000 0 300 0 50
D 200 100 0 100 150
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Figure 6.3: A Sample Compound RI

neighbors to send a query to. A RI is a data structure (and associated algorithms)

that, given a query, returns a list of neighbors, ranked according to their goodness

for the query. The notion of goodness may vary but in general it should reflect the

number of documents in “nearby” nodes.

As a running example, we will use a P2P system for retrieval of text documents

with the network depicted on the right side of Figure 6.3. For simplicity, this network

does not have cycles (we discuss cycles in Section 6.6). In this system, documents

are on zero or more “topics,” and queries request documents on particular topics.

Each node has a local index for quickly finding local documents when a query is

received. Nodes also have a CRI containing (i) the number of documents along each

path and (ii) the number of documents on each topic of interest In Figure 6.3 we

show an example of a CRI for node A with three neighbors (paths): B, C, and D.

For simplicity, we assume that there are only four topics of interest: databases (DB),

networks (N), theory (T), and languages (L). In the figure, we see that we can access

1000 documents through C (i.e., there are 1000 documents in C, G and H ) and that

of those documents, 300 are about “networks” and 50 are about “languages.”

The RI may be “coarser” than the local indices maintained at nodes. For exam-

ple, node A could maintain a more detailed local index in which each document is

further classified into sub-categories. By keeping a summary of the detailed index,

we achieved a more compact RI at the cost of introducing “errors” when user queries

are based on the subcategories. Specifically, the summarizing of the local index may

introduce overcounts or undercounts in the RI. For example, a summarization that
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groups several subtopics into a single topic (e.g., “indices”, “recovery”, and “SQL”

into “databases”) may introduce overcounts on the number of documents available.

In fact, a query for documents on “SQL” is converted into a query for documents on

“databases,” making us believe that there are many documents on “SQL” whereas

in reality there may be few or even none. Summarization can also introduce under-

counts. For example, if the summarization uses a frequency threshold (e.g., throws

away topics with very few documents), then we may believe that there are no docu-

ments on a topic when there are in fact a few.

Given the index, we need now to compute the “goodness” of each node for a

query. For CRIs we will use the number of documents that may be found in a path

as a measure of goodness. To compute the number of documents, we will use the

estimators in [31, 32]. Given that our focus is not on the estimators but on the use

and maintenance of RIs, throughout the chapter we will use a simplified model in

which queries are a conjunction of subject topics, documents can have more than one

topic, and document topics are independent. Thus, we can estimate the number of

results in a path as: NumberOfDocuments ×
∏

i
CRI(si)

NumberOfDocuments
where CRI(si)

is the value for the cell at the column for topic si and at the row for a neighbor.

To illustrate, let us assume that A receives a query for documents on “databases”

and “languages.” We estimate the number of results as 20
100

× 30
100

× 100 = 6 at B,
0

100
× 0

100
× 100 = 0 at C, and 100

200
× 150

200
× 200 = 75 at D. Therefore, the “goodness”

of path B will be 6; of path C, 0; and of path D, 75. These numbers are just

estimates and are subject to overcounts and/or undercounts. In particular, if there

is a strong correlation between the topics “databases” and “languages,” then path B

may have as many as 20 documents matching the query for the topics “databases”

and “languages” On the other hand, if there is a strong negative correlation between

the topics “databases” and “languages,” then there may be no documents in path B

on either topic.

One limitation of using CRIs is that they do not take into account the difference

in cost due to the number of “hops” necessary to reach a document. For example, the

documents along path B may all be just one hop away, while the documents along

path C may be scattered in a long chain of nodes and finding them would require
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Figure 6.4: Routing Indices

many messages. Later, we will introduce more sophisticated RIs that do not have

this limitation.

In the rest of the section we describe how compound RIs are used, created, and

maintained.

6.4.1 Using Routing Indices

In this subsection we show how RIs, and in particular compound RIs, can improve the

performance of query processing in a P2P system. Consider the P2P system described

in Figure 6.3. In Figure 6.4 we present part of the P2P network with RIs attached

to each node. For compactness, we represent the four topics of interest: database,

network, theory, and languages with the letters DB, N, T, and L respectively. In the

example, we assume that the first row of each RI contains a summary of the local

index. (This summary can be obtained by consolidating subtopics into the main

topics, or perhaps by using clustering on a local keyword index to generate topics for

each of its documents.) In particular, the summary of A’s local index shows that A

has 300 documents: 30 about databases, 80 about networks, none about theory, and

10 about languages. The rest of the rows represent a compound RI. In the example,

the RI shows that node A can access 100 database documents through D (60 in D,

25 in I, and 15 in J).
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When A receives from a client a query for documents about “databases” and

“languages,” it first uses the local database to answer the query. If not enough

answers are found, it computes the goodness of each path as explained earlier. In

this case, the goodness of B, C, and D is 6, 0, and 75 respectively, so A selects D

as the best neighbor to forward the query to. In turn, D returns all local results

to the client of A and, if not enough results are found, computes the goodness of I

and J (25 and 7.5). Since I has the highest goodness, D forwards the query to I.

In turn, I returns local results, but it cannot forward the query any further, so (if

more results are needed) it returns the query to D which forwards it to its best next

neighbor J . Even though the network in the example is very small, a query with a

stop condition of 50 documents will generate 9 messages when using flooding, but

only 3 messages if using the RI. Even if we send the query serially in a depth-first

fashion to neighbors ranked randomly, we will have 3 messages in the best case and

9 messages in the worst case. The savings in the number of messages when using RIs

is the result of forwarding the query only to the nodes that have a high potential of

obtaining results.

The storage space required by an RI in a node is modest as we are only storing

index information for each neighbor. Furthermore, the storage space per neighbor

can be adjusted by increasing or decreasing the level of summarization of the index.

Specifically, if s is the counter size in bytes, c is the number of categories, N the

number of nodes, and b the branching factor (i.e., number of neighbors), then a

centralized index would require c× (t+1)×N bytes, while each node of a distributed

system would need c × (t + 1) × b bytes. Thus, the total for the entire distributed

system is c × (t + 1) × b × N bytes. Although the RIs require more storage space

overall than a centralized index, the cost of the storage space is shared among the

network nodes.

6.4.2 Creating Routing Indices

Let us now turn our attention to how RIs are created. Returning to our running

example, let us assume that initially there is no connection between A and D. The
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initial state of the system is shown by the solid lines of Figure 6.5a. When the A−D

connection is established, node A informs node D of all the documents that can be

accessed through node A. Specifically, node A aggregates its RI and sends it to D.

In our example, the aggregation is done by adding all the vectors in the RI. Thus,

A sends D a vector saying that it has access to 1400 documents (300 + 100 + 1000),

of which 50 are on databases (30 + 20 + 0), 380 on networks (80 + 0 + 300), 10 on

theory (0 + 10 + 0), and 90 on languages (10 + 30 + 50). A does not need to send

more information as D does not need to know the precise location of the documents,

but only that they can be accessed through A. After D receives the aggregated RI

from A, it adds an additional row to its RI with A’s identifier and A’s aggregated

RI (as shown in Figure 6.5b). By aggregating RIs, we reduce both the amount of

information transmitted and the storage space used. Similarly, D aggregates its RI

(excluding the row for A if it is already in the RI), and sends its aggregated RI to A.

Additionally, the RI creation process at A and D can be done in parallel.

After A and D update their RIs, they need to inform their other neighbors that

they now have access to more documents. Thus, D sends an aggregate of its RI to

I (excluding I’s row) and to J (excluding J ’s row) as shown in Figure 6.5b. Then

I and J update their RI by replacing the row for D with the new information (not

shown in the figure). If I and J were connected to nodes other than D, they would

have to send an update to those nodes too.

6.4.3 Maintaining Routing Indices

The process of maintaining RIs is identical to the process used for creating them.

To illustrate, let us suppose now that client I introduces two new documents about

“languages” in its database. To update the RIs of its neighbors, I summarizes its

new local index, aggregates all the rows of its compound RI (excluding the row for

D), and sends this information to D. Then D replaces the old row for I with the

received aggregated RI. In turn, D computes and sends new aggregates to A and J .

When receiving the update, A and J update their RIs and compute new aggregates

for their neighbors, and so on. For efficiency, we may delay exporting an update for
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Figure 6.5: Creating a Routing Index

a short time so we can batch several updates, thus trading RI freshness for a reduced

update cost. We may also choose not to send updates when the difference between

the old and the new value is not significant. By not sending minor updates, we can

again trade reduced update cost for accuracy of the RI.

Finally, a special but frequent update case occurs when a node disconnects from

the network. To illustrate, let us suppose that I disconnects from the network. Node

D detects the disconnection and updates its RI by removing the row for I. Then

D informs its neighbors of the change on the number of documents it can access by

sending new aggregates of its RI to them. In turn, the neighbors of D update their

RIs and propagate the new information to their neighbors. Thus, we did not need I’s
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1 Hop 2 Hops
Node # DB N T L # DB N T L

X 60 13 2 5 10 20 10 10 4 17
Y 30 0 3 15 12 50 31 0 15 20
Z 5 2 0 3 3 70 10 40 20 50
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Figure 6.6: A sample Hop-count RI for node W

participation (or the participation of any other neighbor) in the disconnection process.

Not requiring the participation of a disconnecting node is an important feature in a

P2P system in which nodes can come and go at will.

6.5 Alternative Routing Indices

6.5.1 Hop-count Routing Indices

In this subsection, we present an alternative data structure for an RI: a hop-count

RI. The main limitation of the compound RI is that it does not take into account the

number of “hops” (query forwardings) required to find documents. In the hop-count

RI we stored aggregated RIs for each “hop” up to a maximum number of hops. We

call this number the horizon of the RI. We show in Figure 6.6 a sample hop-count

RI with a horizon of 2 hops. The node with this hop-count RI has three neighbors:

X, Y , and Z. With one hop via neighbor X, the node can find 60 documents, out

of which 4 are about databases, 2 about networks, 5 about theory, and 10 about

systems. The node can also find 20 more documents through X with 2 hops (i.e., at

X’s neighbors). We do not have information beyond the horizon with this kind of RI.

The estimator of a hop-count RI needs a cost model to compute the goodness of

a neighbor. For example, neighbor X may be preferable to neighbor Y for a query

on topic “DB,” as through X we would find 13 results with one hop, while it would

require two hops to find that many results through Y . On the other hand, we can

find more results (31) when going through Y .
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If we define cost in terms of number of messages (we will expand on the notion

of cost in Section 6.7), then we can define the goodness of a neighbor as the ratio

between the number of documents available through that neighbor and the number

of messages required to get those documents. So a neighbor that allows us to find 3

documents per message is better than a neighbor that allows us to find 1 document

per message.

A simple model that allows us to compute this ratio is the regular-tree cost model.

The model assumes that document results are uniformly distributed across the net-

work and that the network is a regular tree with fanout F . Under these assumptions,

it takes F h messages to find all documents at hop h. Therefore, we can compute the

number of documents per message by dividing the expected number of result doc-

uments at each hop by the number of messages needed to find them. Formally, we

define the goodness (goodnesshc) of Neighbori with respect to query Q for hop-count

RI as: goodnesshc(Neighbori, Q) =
∑

j=0..h
goodness(Ni[j],Q)

F j , where h is the horizon of

the hop-count RI, goodness() is the estimator for CRI, and Ni[j] is the RI entry for

j hops through Neighbori. In our example, if we assume F = 3, the goodness of X

for a query about “DB” documents would be 13 + 10/3 = 16.33 and for Y would be

0 + 31/3 = 10.33, so we would prefer X over Y .

Let us turn now to the problem of how to create and update hop-count RIs. A

node that needs to notify its neighbors of an update in its database first builds the

aggregated RI in the same fashion as the compound RI. Then it shifts the columns to

the right, so the entries for 1 hop become the entries for 2 hops, the entries for 2 hops

become those for 3 hops, and so on. The entries in the last column of the original RI

are discarded and the summary of the local index is placed as the first column of the

new table (i.e. as the one-hop entry). This new aggregated RI is sent to all neighbors

which in turn update their RIs.

6.5.2 Exponentially aggregated RI

The hop-count RI is effective in taking into account the number of hops. However,

this benefit comes at a higher storage and transmission cost than the compound
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Path # DB N T L
X 66.67 16.33 5.33 6.33 15.67
Y 46.67 10.33 3.00 20.00 18.67
Z 28.33 5.33 13.33 9.67 19.67
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Figure 6.7: A sample Exponential Routing Index for Node W

RI. Moreover, in Section 6.7.3, we will see that the hop-count RI performance is

negatively affected by the lack of information beyond the horizon (a hybrid CRI-HRI

overcomes this disadvantage, but it still does not solve the storage and transmission

cost problem). In this subsection we present an alternative index structure, the

exponential aggregated RI, that overcomes these shortcomings at the cost of some

potential loss in accuracy.

The exponentially aggregated RI stores the result of applying the regular-tree cost

formula to a hop-count RI. Specifically, each entry of the ERI for node N contains a

value computed as:
∑

j=1..th
goodness(N [j],T )

F j−1 , where th is the height and F the fan-out

of the assumed regular tree, goodness() is the Compound RI estimator, N [j] is the

summary of the local index of neighbor j of N , and T is the topic of interest of the

entry.

We show in Figure 6.7 an exponentially aggregated RI computed from our sample

network of Figure 6.6. In the figure, we assume that the neighbors of X, Y , and Z

are leaf nodes and that the fan-out of the tree is 3. The entries for topic “DB” for X

and Y have the values 13 + 10/3 = 16.33 and 0 + 31/3 = 10.33.

The exponential RI makes the same assumptions as the regular-tree cost model

and may not be realistic in some configurations, but it can still be used as an ap-

proximate index. There is a fundamental difference between the exponential RI and

the hop-count RI. While the hop-count RI does not have any information beyond

the horizon, with the exponential RI we can keep information for all nodes accessible

from each neighbor in the RI. In fact, we will see in Section 6.7.3 that the exponential

RI outperforms the hop-count RI in most cases.
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To update exponential RIs, the node that needs to send an update to a neighbor

adds up all rows (except the one associated with the neighbor to which the update

vector is sent), multiplies the resulting vector by 1/F , and adds the goodness of

the summary of its local index. Note that multiplying by 1/F has the same effect

as the shifting of the columns in the hop-count RI, as it does the adding of the

goodness of local index with respect to placing the summary of the local index as

the first hop. When the neighbor receives this update vector, it replaces the row of

the sending node with the new vector and propagates the updates to its neighbors.

In updating exponential RIs, it is essential to propagate updates only when the new

and old values of the vector are “different” enough (for example by requiring that

the Euclidean distance between the two vectors is greater than a certain number). If

we do not do this, the exponential RI would propagate updates to all nodes in the

network.

6.6 Cycles in the P2P Network

In this section we analyze how cycles affect the process of creating and updating RIs

as well as strategies to minimize those effects. To illustrate the effect of cycles, we will

use the initial setup of Figure 6.3, but with the network depicted in Figure 6.8 (with

the cycle A−B −E −G−C −A). Let us assume that node A adds to its database

two new “theory” documents and sends a new aggregate of its RI to B. Node B

sends the update to its E and F neighbors, prompting E to send an update to G,

which sends an update to C, which finally sends an update to A. When A receives

this update, it actually mistakingly assumes that additional “theory” documents are

available via node C, but those additional documents are its own. Worse than that,

the update from C will prompt A to send an update to its neighbors, informing them

that they can access two more theory documents, creating an infinite loop. There are

three general approaches for dealing with cycles:

No-op solution: No changes are made to the algorithms; this solution only works

with the hop-count and the exponential RI schemes. In the case of the hop-count
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Figure 6.8: Cycles and Routing Indices

RI, cycles longer than the horizon will not affect the RI. However, shorter cycles will

affect the hop-count RI but their effect will be limited if we use the regular-tree cost

model. However, the cycle increases the cost of creating/updating the hop-count RI

as updates sent by a node return to it (via the cycle), causing the node to send a

new update to all its neighbors (which in turn send the update back to the node

again). The cycle is broken when the update reaches the horizon of the hop-count RI.

Similarly, in the case of the exponential RI, updates are sent back to the originator.

However, the effect of the cycle will be smaller and smaller every time the update

is sent back (due to the exponential decay), until the difference between the old

update and the new update is small enough and the algorithm stops propagating the

update. As in the hop-count RI, the main effect of the cycle is the increase in cost of

creating/updating the RI.

Cycle avoidance solution: In this solution we do not allow nodes to create an

“update” connection to other nodes if such connection would create a cycle. The

techniques for cycle avoidance have been extensively studied (see [79] for a survey)

and we do not cover it further in this chapter. The main disadvantage of this approach

is that in the absence of global information we may end up with a suboptimal solution.

Cycle detection and recovery: This solution detects cycles sometime after they

are formed and, after that, takes recovery actions to eliminate (or neutralize) the

effect of the cycles. In the example of Figure 6.8, cycles can be detected by having the
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originating node of a query or an update, say A, include a unique message identifier

in the message. Any update (or query forwarding) that any other node sends as a

consequence of this message will have the original message identifier. If a message

with the same identifier returns to A (say from C), then A knows that there is a cycle

and that a recovery procedure should be started.

6.7 Experimental Results

In this section, we evaluate search mechanisms for P2P systems. First, we present our

model of a P2P system. Then we introduce a simulation tool that allows us to evaluate

different search mechanisms efficiently. We then use our tool to study the performance

of different mechanisms as well as the factors that affect their performance. We close

the section with an analysis of the cases where RIs can be used effectively.

6.7.1 Modeling search mechanisms in a P2P system

Our goal in this subsection is to identify the elements of a typical search mechanism

in a P2P system, so we can model each element and study its impact on performance.

A typical P2P system is a network of nodes T in which each node contains a set of

documents. Users send requests consisting of a query q and a stopCondition to a node

of the P2P system. The objective of the search mechanism is to answer those requests

by obtaining a set of documents of size stopCondition that matches the query q. In

addition, search mechanisms allow for updates such as the addition of nodes or new

documents.

To process queries and updates we use the mechanisms described in the previous

sections (CRIs, HRIs, ERIs). For comparison purposes, we add an additional mecha-

nism: No-RI. Instead of using an RI to choose the best neighbor to which to forward

a query, this search mechanism simply chooses a random neighbor.

To further model the elements of a search mechanism, we need to define the

topology of the network, the location of document results, how costs are measured,

and cycle policies.
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Parameter Name Description Value
Network Configuration Parameters
NumNodes Number of nodes in the network 60000
T Topology of the P2P network tree
F Branching factor for tree topology 4
EL Extra links for tree+cycle topology 10
o Outdegree exponent for power law -2.2088
Document Distribution Parameters
QR Total Number of Query Results 3125
D Document distribution 80/20
RI Parameters
Creationsize Avg. size of creation/update message 1000 b
Querysize Avg. size of query message 250 b
StopCondition Number of documents requested 10
H Horizon for HRIs 5
A Decay for ERs 4
c RI Compression 0%
minUpdate min % diff for update propagation 1%

Figure 6.9: Simulation Parameters

The topology of the network defines the number of nodes and how they are con-

nected. In our model, we consider three kinds of network topologies: a tree, a tree

with added cycles, and a power-law graph [44]. The first topology, a tree, is of in-

terest because it does not have cycles (a good base case for our algorithms). For the

second topology, we start with a tree and we add extra vertices at random (creating

cycles) so we can measure the impact of cycles on the search mechanisms. The third

topology, a power-law graph, is considered a good model for P2P systems and allows

us to test our algorithms against a “realistic” topology [23].

We model the location of document results using two distributions: uniform and

an 80/20 biased distribution. Under the uniform distribution all nodes have the same

probability of having each document result (nodes can have more than one document

result). The second distribution assigns uniformly 80% of the document results to

20% of the nodes (and the remaining 20% of the documents to the remaining 80% of

the nodes).

Modeling the cost of a search mechanism is a complex task. We can model the
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cost based on the resources used in the P2P system (e.g., network, storage space, or

processing power) or based on the user experience (e.g., mean query response time,

query throughput, or query turnaround time). In current P2P systems, the critical

resource is the network [14] as many of the nodes are connected through links with

limited bandwidth (e.g., dial-up connections, DSL, and cable). Therefore, in this

chapter we focus on the network and use the number of messages generated by each

algorithm as a measure of cost. This is not to say that user-based factors (such as

response time) are not important, but by focusing on the network we can also improve

those factors.

6.7.2 Simulating a P2P System

In this subsection we describe how our simulator works as well as the choice for the

base values of the parameters.

The simulator starts by generating a network topology. Then it distributes results

among the nodes, picks at random a node that will initially receive the query or

update, and creates the necessary RIs. To build the RIs, we do not need to use

the full-fledged algorithms presented, as we know from which node the query will

be issued. Instead, we use a version of the algorithm that only updates RI entries

for neighbors “downstream” from the node picked as the originator of the query.

Cycles are possible when creating RIs. We consider two possible cycle policies: no-op

solution and detect and recover (we do not consider the cycle avoidance solution as

it has the same effect as the detect and recover policy when processing queries and

updates). As the name implies, in the no-op solution we do not do anything special

to deal with cycles. For the detect and recover policy, nodes keep track of the queries

and updates that they have processed. If a query or update reaches a node for a

second time (due to a cycle) the message is not forwarded any further (breaking the

cycle).

We generate errors to simulate approximate indices in two ways. In one scenario,

we assume that RIs were implemented as hash tables with document counts in each

bucket. We generate overcounts by consolidating buckets of the original hash tables
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and adding their document counts (under the motivation that by consolidating buck-

ets we reduce the size of the index). In the second scenario, errors are generated by

using a normal distribution with mean 0 and variance v (making errors positives for

overcounts, negative for undercounts, and unchanged for mixed). In all cases, errors

are propagated on updates, so they compound from node to node (as they would do

in a real system).

In the case of a query, after building the network, distributing the documents, and

building the RIs, we send a message to the selected initial node with the number of

documents requested (stopCondition in this case). The node finds how many local

results are available (if any), subtracts the number of local results from the number

of requested documents and if this number has not reached zero, the node sends the

request sequentially to each of its neighbors in the order prescribed by the RI (with

the number of requested documents set to the number received minus the number of

documents found). In turn, a node that receives a forwarded request performs the

same procedure until the number of requested documents reaches zero (we are done)

or the node does not have more neighbors to which to forward the query (we cannot

proceed further). In the latter case, the query is returned to the neighbor that sent

the query to that node, and the neighbor sends the returned query to its next best

neighbor according to the RI. During this process we count the three kinds of messages

that are generated: forwarded queries (when a node sends the query to a neighbor),

returned queries (when a node sends back a query because it cannot be forwarded

any more and the stop condition has not yet been met), and result messages (sent to

the originator of the query informing them that a result can be accessed at a node).

We are not counting the actual transmission of the answers as these messages are

very application dependent and they do not depend on the performance of the search

mechanism. We handle cycles during query processing in the same way as when we

built RIs.

In the case of an update, the initially selected node updates its RI, aggregates all

rows and sends them to all of its neighbors (appropriately modified depending on the

RI used). In turn, each neighbor checks if the changes in the RI are “significant” by

comparing the percentage difference between the old and the new value against the
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minUpdate parameter. If the changes are significant, it updates its RI, aggregates all

columns and sends the aggregated vector to its neighbors. The stop condition for an

update varies among the different RIs as described in previous sections. As before,

during the update process, we apply the cycle policies defined in the model.

In the remainder of this section, we explain the choice for base values of the pa-

rameters in Figure 6.9. The first parameter, NumNodes defines the size of the P2P

network. In our simulations, we set NumNodes to 60000, roughly double the maxi-

mum number of nodes found in a 2000 study of the Gnutella network [14]. Parameter

T defines the topology of the network. To further define the three topologies in our

model, we define F as the branching factor for the tree topology, EL as the number

of links added to a tree to form a tree with cycles, and o as the outdegree exponent

of a power-law network. In the simulator, we generate a power-law network by using

the power-law out-degree generator [61]. We set the outdegree exponent to -2.20288

equal to the best fit for the Internet [23]. The Document Distribution Parameters

define how documents are distributed throughout the P2P system. For simplicity,

we assume that all queries have the same number of results (QR). Reference [95]

found that about 5.2% of the nodes of the Gnutella network will have an answer for

a given query, so we set this number to 3125 (5.2% of 60000 nodes). Parameter D

defines the location of document results in the network. Finally, the RI Parameters

define the size of RI tables and messages as well as the parameters needed for each

RI algorithm.

6.7.3 Evaluating P2P Search Mechanism

In this section we experimentally compare the three proposed RIs: compound RI

(CRI), hop-count RI (HRI), and exponential RI (ERI) against each other and against

the No-RI search mechanism. We also explore how the performance of the RIs are af-

fected by approximate indices, different stop conditions, document result distribution,

number of document results, and network topology. All results were computed with

at least a 95% confidence interval of having a relative error of 10% or less. Parameters

are set to the base values presented in Figure 6.9 unless stated otherwise.
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Figure 6.10: Comparison of CRI, HRI, and ERI

Figure 6.10 shows the number of messages needed to process a query when using

each kind of RI for two document distributions. The advantage of using RIs is obvious;

we are able to reduce the number of messages by half when compared to not using

RI. Among the RIs, CRI had the best performance, followed by the ERI and HRI.

This difference in performance is a function of the number of nodes used to generate

the index. In particular, CRI uses all nodes in the network, HRI uses nodes within a

predefined horizon, and ERI uses nodes until the exponentially decayed value of an

index entry reaches a minimum value (resulting in using more nodes than HRI, but

fewer than CRI). This result shows that the more nodes an RI uses to compute the

goodness of a path, the better the RI is. However, we will see that a larger number

of nodes implies a higher update cost.

In Figure 6.10 we also present the effect of using two document distributions,

an 80/20 biased and a uniform document distribution. Surprisingly, a 80/20 biased

distribution does not improve the performance of RIs much, but it degrades the per-

formance of a No-RI search mechanism. To understand this result, we analyzed traces
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of our simulations. In the case of RIs under a 80/20 document distribution, the algo-

rithm directed the queries to nodes with a high number of document results, but to

reach those content-loaded nodes the queries needed to travel through several nodes

that had very few or no document results. On the other hand, under a uniform docu-

ment placement, the algorithms followed good paths where at each node it obtained a

few results. In summary, in one case, we collected results by traveling over an almost

empty path to a full node, while in the other case, we collected results by traveling

through a path of a similar length in which each node contributes a few documents.

The overall result was that the number of messages per document result was about

the same in both cases. In the case of the No-RI approach, an 80/20 document dis-

tribution penalizes performance as the search mechanism needs to visit a number of

nodes until it finds a content-loaded node (generating a large number of messages in

the process).

We also compared RIs against non-index/flooding solutions such as Gnutella. In

that case, RIs reduce the number of messages by up to two orders of magnitude (see

Figure 6.12). However, this comparison is not completely fair as non-index systems

find all results (versus only a user-defined number of results when using RIs) and

they potentially have a better response time (as queries are processed in parallel,

rather than sequentially). However, finding all results may be an overkill for most

applications as users rarely examine more than the first 10 top results returned by

a search engine [11]. In addition, low response times may be hard to achieve in

Gnutella-like systems because of network contention created by tens of thousands of

messages generated by each query.

We studied how increases in the requested number of documents affects RIs. In

Figure 6.11, we observed, as expected, that the higher the number of requested docu-

ments, the more messages generated. However, the increase in the number of messages

is linear for all RIs, demonstrating that they scale well on this parameter. We also

analyzed the effect of a decrease in the number of document results available. Fig-

ure 6.12 shows the number of messages needed by the search mechanism when using

each kind of RIs and flooding at different levels of “potential” query results (i.e.,

number of documents with the requested content of interest available in the system).
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Figure 6.11: Effect of Number of Documents Requested

As expected, the higher the number of documents with content of interest, the bet-

ter RIs perform. However, as before, the number of messages grows linearly with a

reduction of document results (x-axis in graph has a logarithmic scale). The reason

for the slight increase in the flooding curve is that the flooding mechanism always

find all documents with content of interest (while the search mechanisms based on

RI only find 10 documents).

We now investigate how errors in RIs, and particularly overcounts, affect RI per-

formance. As discussed in Section 6.4, errors can occur in a variety of ways; here we

select one scenario to illustrate. We assume that documents are organized into cate-

gories, and the index is a hash table of categories. Several categories may hash to the

same bucket, so the count in a bucket represents the aggregate number of documents

in those categories. For example, suppose there are 3 “database” documents, and 2

“network” ones. If “database” and “network” hash to the same bucket, the consoli-

dated bucket will have a count of 5 documents. If a query is looking for “database”

documents, when using the RI we will believe that there are 5 of them, when in reality

there are only 3 (an overcount). (Instead of adding the original document counts, we
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Figure 6.12: Effect of Number of Potential Results

could have also chosen to take the minimum of them, generating undercounts; or we

could have averaged them, generating mixed errors.)

As the table size is reduced, more and more overcounts occur. In Figure 6.13, we

show the performance of CRI, HRI and ERI, as a function of the “index compression.”

For example, a 50% value means that the number of hash table buckets is half the

number of categories, while 83% represents a table with one-sixth the categories.

(Note that the scale is not linear.) From the graph, we can see that even though

there is a loss of performance because of overcounts, this loss is modest even in

the case of significant reductions in the size of the index. Moreover, query processing

when using RIs is still far cheaper than the No-RI approach even if we use the highest

compression levels. We conducted additional experiments for undercounts and mixed

errors as well as for other error models with results similar to the one presented here.

In Figure 6.14 we study how ERIs perform when cycles are added to a tree network.

Cycles are created by adding random links to a tree network with NumNodes − 1

links. As expected, the number of messages increases as we add more links and cycles

are created. The increase in traffic is the result of two factors. First, there is a loss

of accuracy of the RI. In the case of the “detect and recover” policy, this loss is the
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Figure 6.13: Effect of Overcounts

result of missing the best route to the results (as explained in Section 6.6), and in

the case of the “no-op” policy accuracy suffers because of overcounts introduced in

the generation of the RI. Second, during query processing the number of messages

increases. In the case of the “detect and recover” policy, those extra messages are the

result of return-queries messages sent by a node that detects a cycle. In the case of

the no-op policy, extra messages are generated when we traverse a cycle more than

once, finding document results that were already found in a previous iteration. In

figure 6.14, we observe that the increase in the number of messages is small if we

use the “detect and recover” policy, but it can be significant if we choose to ignore

cycles. An unexpected result is that the number of messages drops if we add a large

number of links. This drop is the result of the added connectivity that additional

links create, which allows shorter routes to document results. Similar performance to

the one presented for ERI is shown by HRI and CRI (when using the ignore-detect

policy, as CRI is not guaranteed to terminate when using the no-op policy).

In Figure 6.15 we study how RIs perform in different network topologies. The

result of our analysis is surprising at first glance: RIs perform better in a power-law
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Figure 6.14: Effect of Cycles

network than in a tree network. There are two reasons for this result. First, while

in a tree-like network the connectivity of every node (except leaf nodes) is the same,

in a power-law network a few nodes have a significantly higher connectivity than the

rest. By analyzing the traces of our simulation, we found that the query algorithms

actually direct the queries towards those well-connected nodes. After getting to these

highly connected nodes, a large number of results is collected without having to issue

many messages. The second reason for this performance improvement is that power-

law distributions generate network topologies where the average path length between

two nodes is lower than in tree topologies. Lower path length improves performance

as we need fewer messages to go from node to node. On the other hand, these same

two factors hinder the performance of the No-RI approach. In a power-law network,

there are very few highly connected nodes and it is not easy to find them if we just

move randomly as No-RI does. As a result, the No-RI approach visits a significant

number of nodes until it finally stumbles onto a highly connected node (generating a

large number of messages in the process). Shorter path length also hinders No-RI as

bad decisions about which neighbor to contact often result in return-query messages.
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Figure 6.15: Network topology

To further illustrate why shorter path length helps our algorithm, let us consider

two extreme cases: a linear network, in which each node Ni is connected only to nodes

Ni+1 and Ni−1, and a star network in which all nodes connect to a single node (note

that the number of links is the same as in the linear network). In the first case, the

RI is not helping much as each node only has two neighbors and to find all documents

we would have to jump from node to node, generating a large number of messages. In

the second case, however, we can find results very quickly as the RI of the node in the

center of the star will forward queries directly to the nodes with document results.

Figure 6.16 shows the number of messages needed to update each kind of RI for

each network topology. The graph shows the cost of one batch of updates, propagated

throughout the network. In the graph we can see that the cost of CRI is much higher

when compared with HRI and ERI. This is the result of CRI propagating the update

to all nodes, while HRI and ERI only propagate the update to a subset of the network.

This result confirms that the additional information and better query performance

of CRIs come with a high price tag. On the other hand, HRIs and ERIs have very

low update costs and their query processing performance is very close to the one of
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Figure 6.16: Updates and Network Topology

CRIs, making them an excellent choice as the search mechanism of a P2P system.

In the graph we can also see that network topology has little impact on the update

performance of RIs, as there is low or no correlation between the network topology

and the number of nodes that need to be updated.

We also studied the tradeoff between query and update costs for RIs (Figure 6.17).

For a system processing 1032 queries per minute (the average query load observed on

a section of the Gnutella network [95]), the point where the total cost of using ERIs is

the same as the cost of a system without RIs was at an update load of 36 updates per

minute. In practice we would expect the number of updates to be way below 36 per

minute, especially since it is not that critical to keep indices up to date and updates

can be batched together. Thus, the search improvements afforded by RIs are seldom

outweighed by the cost of updating them.
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6.8 Discussion

In this chapter we studied how to improve the efficiency of content search in a peer-to-

peer system, and in particular, in a federation of ARs. We achieve greater efficiency

by placing Routing Indices in each node. Three possible RIs: compound RIs, hop-

count RIs, and exponential RIs, were proposed and experimentally evaluated using

simulations. From our experiments we conclude that ERIs and HRI offer significant

improvements versus not using an RI, while keeping update costs low. We believe

that routing indices, and in particular ERIs and HRIs, can help improve the search

performance not only of ARs but also of current and future P2P systems.
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7.1 Overview

As we explained in Chapter 6, a federation of ARs needs not only to preserve in-

formation for long periods of time, but also needs to provide efficient access to the

archived information. In this chapter, we study how to build efficient networks to

improve search performance (we will see that efficient networks help most searching

mechanism, including the Routing Indices that we presented in Chapter 6). As in the

previous chapter, the techniques we propose here can be applied not only to a feder-

ation of Archival Repositories but also to more general Peer-to-peer systems (P2P).

Therefore, we will tackle the more general problem of searching in P2P systems, while

making references to the differences with federations of Archival Repositories when

needed.

Search techniques used in current large federated systems are very inefficient and

they do not scale well as the number of nodes increases. This inefficiency arises

because most of those systems create a random overlay network where queries are

blindly forwarded from node to node. As an alternative, there have been proposals

for “rigid” systems that place content at nodes based on hash functions, thus making

it easier to locate content later on (e.g., [78, 65]). Although such schemes provide

good performance for point queries (where the search key is known exactly), they

are not as effective for approximate, range, or text queries. Furthermore, in general,

nodes may not be willing to accept arbitrary content nor arbitrary connections from

others.

In this chapter we propose Semantic Overlay Networks (SONs), a flexible network

organization that improves query performance while maintaining a high degree of

node autonomy. With Semantic Overlay Networks (SONs), nodes with semantically

similar content are “clustered” together. To illustrate, consider Figure 7.1 which

shows eight nodes, A to H, connected by the solid lines. When using SONs, nodes

connect to other nodes that have semantically similar content. For example, nodes A,

B, and C all have “Rock” songs, so they establish connections among them. Similarly,

nodes C, E, and F have “Rap” songs, so they cluster close to each other. Note that

we do not mandate how connections are done inside a SON. For instance, in the Rap
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Figure 7.1: Semantic Overlay Networks

SON node C is not required to connect directly to F . Furthermore, nodes can belong

to more than one SON (e.g., C belongs to the Rap and Rock SONs). In addition to

the simple partitioning illustrated by Figure 7.1, in this chapter we will also explore

the use of content hierarchies, where for example, the Rock SON is subdivided into

“Soft Rock” and “Hard Rock.”

In a SON system, queries are processed by identifying which SON (or SONs) are

better suited to answer it. Then the query is sent to a node in those SONs and the

query is forwarded only to the other members of that SON. In this way, a query for

Rock songs will go directly to the nodes that have Rock content (which are likely to

have answers for it), reducing the time that it takes to answer the query. Almost

as important, nodes outside the Rock SON (and therefore unlikely to have answers)

are not bothered with that query, freeing resources that can be used to improve the

performance of other queries.

There are many challenges when building SONs. First, we need to be able to

classify queries and nodes (what does “contain rock songs” means?). We need to

decide the level of granularity for the classification (e.g., just rock songs versus soft,
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pop, and metal rock) as too little granularity would not generate enough locality,

while too much would increase maintenance costs. We need to decide when a node

should join a SON (if a node has just a couple of documents on “rock,” do we need

to place it in the same SON as a node that has hundreds of “rock” documents?).

Finally, we need to choose which SONs to use when answering a query.

Many of our questions can only be answered empirically by studying real content

and how well it can be organized into SONs. For our empirical evaluation we have

chosen music-sharing systems. These systems are of interest not only because they are

the biggest P2P application ever deployed, but also because music semantics are rich

enough to allow different classification hierarchies. In addition there is a significant

amount of data available that allows us to perform realistic evaluations.

In this chapter we study options for building effective SONs and evaluate their

performance by using an actual snapshot of a set of music-sharing clients. The main

contributions of this chapter are:

• We introduce the concept of SONs, a network organization that can efficiently

process queries while preserving a high degree of node autonomy.

• We analyze the elements necessary for the building and usage of SONs.

• We evaluate the performance of SONs with real user data and find that SONs

can find results with only 10%-20% of message overhead that a system based

on a random topology would incur.

• We introduce Layered SONs, an implementation of SONs that further improves

query performance at the expense of a marginal reduction of the maximum

achievable recall level.

7.2 Related Work

The idea of placing data in nodes close to where relevant queries originate was used in

early distributed database systems [41]. However, the algorithms used for distributed

databases are based on two fundamental assumptions that are not applicable to P2P
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systems: that there are a small number of stables nodes, and that the designer has

total control over the data.

There are a number of P2P research systems (CAN [65], CHORD [78], Oceanstore

[43], Pastry [71], and Tapestry [97]) that are designed so documents can be found

with a very small number of messages. However, all these techniques either mandate

a specific network structure or assume total control over the location of the data.

Although these techniques may be appropriate in some application, the lack of node

autonomy has prevented their use in wide-scale P2P systems. In addition, the ability

to create groups of peers in a P2P system is supported by the JXTA framework [89].

However JXTA (as a framework) does not prescribe the structure of the groups, or

when nodes should join a group, or how to search between the groups.

Semantic Overlay Networks are also related to the concept of online communi-

ties [76] such as Yahoo Groups [88] and MSN Communities [86]. In an online com-

munity, users with common interest join specific groups and share information and

files. However, most online communities contain a central element that coordinates

the actions of the members of the group.

The problem of how to disseminate queries within a P2P system has been studied

recently. The problem of which neighbors a query should be forwarded can be solved

by using local indices [96], routing indices(see Chapter 6), or by simply sending the

query to all neighbors (as Gnutella does).

There is a large corpus of work on document clustering using hierarchical systems

(see [53] for a survey). However, most clustering algorithms assume that documents

are part of a controlled collection located at a central database. Clustering algorithms

for decentralized environments have also been studied in the context of the world wide

web. However, these techniques depend on crawling the data into a centralized site

and then using clustering techniques to either make web search results more accurate

(as in SONIA [72]) or easier to understand (as in Vivisimo [92]). A more decentralized

approach has been taken by Edutella [57] where peers with similar content connect

to the same super peer.
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Figure 7.2: A Classification Hierarchy

7.3 Semantic Overlay Networks

In this section we formally introduce the concept of Semantic Overlay Networks

(SONs). We model our system as a set of nodes N where each node ni ∈ N maintains

a set of documents Di (a particular document may be stored in more than one node).

We denote the set of all documents in all nodes as D. Each node is logically linked to

a relatively small set of nodes (called its neighbors) which in turn are linked to more

nodes. A link is a triple (ni, nj, l) where ni and nj are the connected nodes and l is

a string. We call the set of links with the same l, an overlay network. As links are

bidirectional, (ni, nj, l) and (nj, ni, l) are the same.

Current P2P system are established by a single overlay network (i.e., all links

have the same l). However, this needs not to be the case and a P2P system can

have multiple overlay networks. In this case, a node can be connected to a set of

neighbors through an l1 link and to a potentially different set of nodes through an l2

link. We will see that a carefully chosen set of overlay networks can improve search

performance.

In this chapter, we are focusing on the usage and creation of overlay networks,

and not on how queries are routed within an overlay network (see Section 7.2 for

a brief overview of current solutions to the intra-overlay network routing problem).

Therefore, we will ignore the actual link structure within an overlay network and

we will represent an overlay network just by the set of nodes in it (ONl = {ni ∈
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N |∃ a link (ni, nj, l)}). In addition, we assume that an overlay network ONl supports

three functions: Join(ni, l), where one or more links of the form (ni, nj, l) are created

(nj ∈ ONl); Search(r, l) that returns a set of nodes in ONl with matches for request

r; and Leave(ni, l) where we drop all the links in ONl involving ni.

The implementation of the functions Join(ni, l), Search(r, l) and Leave(ni, l) will

vary from system to system. Additionally, these functions may be implemented by

each node of the network, a subset of it, or even be provided by a computer outside

the network. For example, in the Gnutella file sharing system, Join(ni, l) starts by

linking the node ni to a set of well known nodes (whose addresses are usually pub-

lished on a web page). Then, ni can learn about additional nodes (and potentially

link to them) by sending “ping” messages through the network (nodes may reply to

a “ping” message with a “pong” message that contains their identity). The func-

tion Search(r, l) in Gnutella works by having a node send the request along with

a “horizon” counter (TTL) to all its neighbors. The neighbors check for matches,

returning their identifier to the original requesting node if there are any matches.

Then these nodes decrement the horizon counter by one and send the request and

the new counter to their neighbors. The process continues until the counter reaches

zero, when the request is discarded. Finally, Leave(ni, l) is implemented in Gnutella

by simply dropping all the l links of ni.

Requests for documents are made by issuing a query q and some additional system-

dependent information (such as the horizon of the query). A query is also system

dependent and it can be as simple as a document identifier, or keywords, or even

a complex SQL query. We model a match between a document d and a query

q as a function M(q, d) that returns 1 if there is a match or 0 otherwise. The

number of hits for a query q in a node ni is the number of matches in the node

(H(q, ni) =
∑

d∈Di
M(q, d)). Similarly, the number of hits in an overlay network will

be H(q, ONl) =
∑

ni∈ONl
H(q, ni). We will denote the probability of a match between

qi and dj (i.e., Prob(M(qi, dj) = 1)) as PM(qi, dj). Queries can either be exhaustive

or partial. In the first case, the system must return all documents that match the

query. In the second case, the request includes a minimum number of results that

need to be returned.
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Figure 7.3: Classification Examples

7.3.1 Classification Hierarchies

Our objective is to define a set of overlay networks in such a way that, when given a

request, we can select a small number of overlay networks whose nodes have a “high”

number of hits (or all hits if the query is exhaustive). The benefit of this strategy

is two fold. First, the nodes to which the request is sent will have many matches,

so the request is answered faster; and second, but not less important, the nodes that

have few results for this query will not receive it, avoiding wasting resources on that

request (and allowing other requests to be processed faster).

We propose using a classification hierarchy as the basis of the formation of the

overlay networks. A classification hierarchy, H is a tree of concepts such as the one in

Figure 7.2. In the figure, we show a classification hierarchy where music documents

are classified according to their style (rock, jazz, etc.) and their substyle (soft, dance,

etc.).

Each document and query is classified into one or more leaf concepts in the hi-

erarchy. Conceptually, the classification of queries and documents is done by two

functions, C∗
q (q) and C∗

d(d) respectively, which return one or more leaf concepts in the

hierarchy. These functions are chosen so that if M(q, d) = 1 then C∗
q (q) ∩C∗

d(d) 6= ∅.
However, in practice, classification procedures may be imprecise as they may not be

able to determine exactly to which concept a query or document belongs. In this

case, imprecise classification functions, Cq(q) and Cd(d), may return non-leaf con-

cepts, meaning that the document or query belongs to one or more descendants of
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the non-leaf concept, but the classifier cannot determine which one. For example,

when using the classification hierarchy of Figure 7.2, a “Pop” document may be clas-

sified as “Rock” if the classifier cannot determine to which substyle (“Pop,” “Dance,”

or “Soft”) the document actually belongs. Specifically, if c ∈ C∗
q (q) then ∃c′ ∈ Cq(q)

such that c′ ≥ c, and if c ∈ C∗
d(d) then ∃c′ ∈ Cd(d) such that c′ ≥ c, where c′ ≥ c

means that c′ is equal to c, or that c′ is a ancestor of c in H. This definition and the

definition of C∗ imply that if M(q, d) = 1 then ∃cq ∈ Cq(q) and cd ∈ Cd(d) such that

cq ≥ cd or cd ≥ cq.

Classifiers may also make mistakes by returning the wrong concept for a query or

document. Specifically, a classifier mistake happens when M(q, d) = 1 but 6 ∃(cq ∈
Cq(q) and cd ∈ Cd(d)) such that cq ≥ cd or cd ≥ cq. In the following discussion, we

will assume that Cq(q) and Cd(d) are imprecise but that they do not make mistakes.

However, in our experiments we will study how much the system is affected in the

presence of classifier mistakes.

In most systems, document classifications change infrequently, so it is advanta-

geous to classify documents in advance. Then, to speed up searches, documents can

be placed in “buckets” that are associated with each concept in the hierarchy. There

are two basic strategies for deciding in which bucket a document should be placed:

differential and total assignment. When using a differential assignment, a document

d is placed in the bucket of concept c if c ∈ Cd(d). On the other hand, when using a

total assignment, a document is placed in the bucket of concept c if either c ∈ Cd(d),

or c is an ancestor of some element of Cd(d) in H, or c is a descendant of some element

of Cd(d) in H. To illustrate, when using the hierarchy of Figure 7.2, a differential

assignment of a document classified as “rock” will place it in the bucket associated

with the concept “rock”, while a total assignment of the same document will place

it in the buckets associated with the concepts “rock,” “music,” “pop,” “dance,” and

“soft.”

Given a query q, we now need to decide which bucket (or buckets) need to be

considered for finding matches. If we used a total assignment, we consider the buckets

associated with each element of Cq(q). On the other hand, if we used a differential

assignment, we need to consider a larger set of buckets: the bucket associated with
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each element of Cq(q), the bucket associated with the ancestors of the elements of

Cq(q), and the bucket associated with the descendants of the elements of Cq(q). As

mentioned before, queries can be exhaustive or partial. In the case of an exhaustive

query, we need to find all matches, so all buckets that may contain results need to

be considered; while in the case of partial queries we do not need to consider all of

them. Given that we need to choose among a set of buckets, partial queries add

an additional dimension to the problem as now we need to select the best subset

of buckets to answer the query. As the exhaustive case is not common in current

P2P systems and it is a special case of partial queries, in the rest of the chapter, we

will assume that we are answering partial queries. We also assume that document

assignment is done using the differential strategy.

Let us now illustrate how classification functions help reduce the number of doc-

uments that need to be considered when answering a query. For simplicity, we will

assume that the classification functions return a single element of the hierarchy. In

Figure 7.3 we present several combinations of classification of documents and queries.

In Figure 7.3a, we show the worst-case scenario for our system when a query is classi-

fied at the root concept of the hierarchy. This classification indicates that the query

results can actually be in any of the leaf concepts in the hierarchy and therefore docu-

ments classified in any category in the system can match the query (depicted as black

circles in the classification hierarchy). In Figure 7.3b, the query is classified at one

of the leaf concepts. In this case, we know that only documents that belong (or may

belong) to this concept can match the query; thus, we need to consider the documents

classified in that base concept and all the ancestor concepts of it and we can safely

ignore all the documents classified into concepts depicted as white circles. Finally, in

Figure 7.3c, the query is classified at an intermediate concept in the hierarchy tree.

In this case, documents matching the query may belong to any of the descendant leaf

concepts, so we need to consider all the descendant concepts of the Cq(q3), as well as

the ancestors of it. In conclusion, given Cq(q), we only need to consider documents

for which their Cd(d) is an ancestor of Cq(q) or a descendant of Cq(q). Note that the

more precise the classification function Cq(q) is, the smaller the number of concepts

that needs to be considered for a match. In addition, the more precise Cd(d) is, the
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smaller the number of documents that will be classified in the intermediate nodes of

the hierarchy, thus also reducing the number of documents that need to be considered

for a match.

So far we have considered documents by themselves, but in a P2P system, doc-

uments are actually kept by nodes. Therefore, we need to place nodes, rather than

documents in buckets. We call a bucket of semantically related nodes a Semantic

Overlay Network. Formally, we define a Semantic Overlay Network as an overlay

network that it is associated with a concept of a classification hierarchy. For short,

we will call a SON associated with concept c, simply the SON of c or SONc. For

example, in the hierarchy in Figure 7.2, we will define 9 SONs: 6 associated with the

leaf nodes (soft, dance, pop, New Orleans, etc.), one associated with rock, another

associate with jazz, and a final one associate with music. To completely define a

SON, we need to explain how nodes are assigned to SONs and how we decide which

SONs to use to answer a query.

A node decides which SONs to join based on the classification of its documents.

Thus, since we are using a differential assignment of documents, a node ni joins SONc

if there is a d ∈ Di such as c ∈ Cd(d). Under this definition, a query q associated with

the concepts Cq(q) will only find results in SONc where c ∈ Cq(q) or c ≤ c′ ∈ Cq(q)

or c ≥ c′ ∈ Cq(q). Note that this strategy is very conservative as it will place a node

in SONc if just one document classifies as c. A less conservative strategy will place a

node in SONc if a “significant” number of document classifies as c. Note that a less

conservative strategy has two effects: it reduces the number of nodes in a SON and

it reduces the number of SONs to which a node belongs. The first of these effects

increases the advantages of SONs as less nodes need to be queried. The second effect

reduces the cost of SONs as the greater the number of SONs to which a node belongs,

the greater the node overhead for handling many different connections. However, a

less conservative strategy may prevent us from finding all documents that match a

query. In Section 7.6, we study different strategies for assignment of nodes to SONs.

After assigning nodes to SON, we may make adjustments to the SONs based on

the actual data distributions in the nodes. For example, if we observe that a SON

contains only a very small number of nodes, we may want to consolidate that SON
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Figure 7.4: Generating Semantic Overlay Networks

with a sibling or its parent in order to reduce overhead.

To summarize, the process of building and using SONs is depicted in Figure 7.4.

First, we evaluate potential classification hierarchies using the actual data distribu-

tions in the nodes (or a sample of them) and find a good hierarchy. We use that

hierarchy to define the SONs of our system. A node joining the system, first runs

a document classifier on all its documents. Then, a node classifier assigns the node

to specific SONs (by, for example, using the conservative strategy described in this

section). Similarly, when a query is issued, it needs to be classified and sent to the

appropriate SONs.

In the next sections, we will study the challenges and present solutions for building

a P2P system using Semantic Overlay networks. We will evaluate our solutions by

simulating a music-sharing system based on real data from Napster [94] and Open-

Nap [90]. Specifically, in this chapter we will address the following challenges:

• Classification hierarchies for SONs (Section 7.4): If nodes have very diverse files,

there will not be enough clustering to merit the use of SONs. So, in practice,

will we see enough clustering? What hierarchies will yield the most clustering

and the best SON organization?
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Figure 7.5: Classification Hierarchies

• Classifying queries and documents (Section 7.5): Imprecise classifiers can map

too many documents and queries to higher levels of the hierarchy, making

searches more expensive. What are the options for building classifiers? Are

they precise enough for our needs? What is the impact of classification errors?

• SON membership (Section 7.6): When should a node join a SON? What is the

cost of joining a SON? Can we reduce the number of SONs that a node needs

to belong to (while being able to find most results)?

• Searching SONs (Section 7.7): How do we search SONs? Is it worth having

Semantic Overlay Networks? Is the search performance of a SON-based system

better than a single-overlay network system such as Gnutella?

7.4 Classification Hierarchies

In this section we present the challenges and some solutions to the problem of choosing

a good classification hierarchy for a SON-based system. Specifically, we will define

what a good classification hierarchy is, how we can evaluate a classification hierarchy,

and how we can choose among a set of possible hierarchies.



182 CHAPTER 7. EFFICIENT NETWORKS IN AN AR FEDERATION

A good classification hierarchy is one that: (i) produces buckets with documents

that belong to a small number of nodes, (ii) nodes have documents in a small number

of buckets, and (iii) allows for easy-to-implement classification algorithms that make

a low number of errors (or no errors at all). In the following paragraphs we explain

the rationale behind these criteria.

We need a classification hierarchy that produces buckets of documents that belong

to a small number of nodes because the smaller the number of nodes we need to search,

the better the query performance. To illustrate, consider a classification hierarchy

for a music-sharing system that is based on the decade in which the music piece was

originally created. In such a system, we may expect that a large number of nodes will

have “90’s or current” music. If that is the case, there is little advantage to creating a

SON for “90’s or current” music, as this SON will have almost all nodes in the system

and it will not produce any benefit (but the system will still be incurring the cost of

an additional connection at each node, and of having to classify nodes and queries).

We need a classification hierarchy such that nodes have documents in a small

number of buckets as each bucket will potentially become a SON that needs to be

handled by the node. The greater the number of SONs, the greater the cost for a

node to keep track of all of them. For example, consider a classification hierarchy for

a music-sharing system that is based on a random hash of the music file. If we assume

that nodes have a lot more files than there are hash buckets, then we can expect with

a high probability that a node will have to join all SONs in the system. In this case,

the node will have to process every single query sent into the system, eliminating all

the benefits of SONs.

Finally, we want classification hierarchies for which it is possible to implement

efficient classifiers that make a small number of errors. To illustrate, consider an

image sharing system with a classification hierarchy that includes the concept “has

a person smiling.” This concept may generate a good number of small SONs, but it

requires a very sophisticated classification engine that may generate a large number

of erroneous results.

Using the criteria for “goodness” of a classification hierarchy presented above, we

can now evaluate classification hierarchies (with the final objective of choosing the
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best one). This evaluation is a very important step as we have seen that if we are not

careful in choosing a good classification hierarchy we may reduce or even eliminate

the benefits of using SONs. To evaluate, first, we need to make sure that classifiers

can be implemented and that they are efficient. Then, we use the actual data from

the nodes in the system to predict the size of the SONs as well as the number of

SONs to which a node will belong.

7.4.1 Experiments

To illustrate the issues described in this section, we will now evaluate three classifi-

cation hierarchies for a music sharing system. While our experimental results in this

chapter are particular to this important application, we have no reason to believe

they would not apply in other applications with good classification hierarchies.

In Figure 7.5, we illustrate three possible classification hierarchies for music. In

the figure we only present a small subset of the concepts in each classification hier-

archy. The full sets of concepts are presented in Appendix B and are based on the

hierarchy used by All Music Guide [93], a music database maintained by volunteers

who manually classify songs and artists.

The first classification hierarchy divides music files according first to their style

(e.g., Rock, Jazz, Classic, etc.), and then to their substyle (e.g., Soft Rock, Dance

Rock, etc.). For style, there are a total of 26 categories and a music file can only

belong to one category; while for substyle, there are 255 categories and a file can be

classified in multiple substyles. The second hierarchy classifies music files based on

the decade in which the piece was originally published (10’s or before, 20’s, ..., 80’s,

and 90’s or newer). Music files can only be classified in one decade. Finally, the third

classification hierarchy divides files according to the “tone” of the piece (e.g., warm,

exciting, sweet, energetic, party, etc.). There are a total of 128 tones and a music file

can be classified in multiple tones.

In our experiment, we used the crawl of 1800 Napster nodes made at the University

of Washington during the month of May 2001 [73]. This crawl included the identity

of the node (user name), and for each node, the listing of its files. For most nodes,
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Figure 7.6: Distribution of Style Buckets

filenames were of the form “directory/author-song title.mp3” which allowed us to

easily classify files by author and song title. There was additional information (length

of file, bit rate, and a signature of the content) that was not used in our evaluations.

Actual file content was not available.

To classify documents into the hierarchy, we used the web interface to the database

of All Music Guide (at allmusic.com). Basically, given a song and artist, the All-

Music-Guide database returns the song style, one or more substyles, the decade when

the song was released, and one or more tones expressed by the song. We will describe

and analyze the classifier in further detail, including how to deal with mistakes and

songs that are not in the database, in Section 7.5.1.

To evaluate the style/substyle classification hierarchy, we will first evaluate the

style classification hierarchy by itself and then (if needed) we will add to the evaluation

the substyle dimension. In Figure 7.6, we show the distribution of Style buckets. To

generate this graph, for each node we counted the number of style categories for which

the node had one or more files. Then we counted the number of nodes with the same

number of style categories and plotted it on the graph. For example, if a node had

files in the Rock, Jazz, Country, and Classic styles (and no files in the other styles),
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Figure 7.7: Bucket Size Distribution for Style Hierarchy

then the node would have been counted in the bar for “4 style” buckets. From the

graph, we can see that 425 nodes (about 24% of the total nodes) have files in just one

style. Moreover, 90% of the nodes have files in eight or fewer style categories. This

result means that if we define a SON based on the style of files, most nodes will have

to handle very few connections.

As indicated before, the smaller the SON, the better query performance will be.

However, we cannot compute the size of the Style SONs without the specific node-to-

SON assignment strategy. Therefore, we will assume the most conservative strategy:

a node will belong to a Style SON if it has one or more files in that Style bucket.

Figure 7.7 shows a histogram for the number of nodes that have one or more files

in each Style bucket. To generate this graph we counted, for each style, the number

of nodes that have one or more files classified in that style. We then counted how

many styles had a number of nodes in the ranges 0 to 199, 200 to 399, and so on, and

plotted them on the graph. For example, the leftmost bar in the graph means that

14 styles buckets had documents that belonged to between 200 and 399 nodes. The

high frequency for bucket size in the interval [200,399] is good news as it shows that

the maximum size of most SONs will be small with only 11% to 22% of the nodes.
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However, there is one style bucket (shown by the rightmost bar) that has documents

belonging to between 1600 and 1800 nodes. Thus, almost all nodes in the system

have one or more documents for that bucket (this bucket corresponds to the style

“Rock”). Given that there is little advantage in creating a SON based on the style

“Rock,” we need to explore if it is possible to subdivide it further by using substyles.

We now consider SONs based on the substyle classification. Although the previous

analysis showed that we only need to subdivide the Rock style category (and perhaps

the two other categories with documents belonging to between 1000 and 1200 nodes),

for completeness we will analyze all substyles categories.

In Figure 7.8 we now show the substyle distribution, analogous to Figure 7.6.

From the graph, we can see that 328 nodes (about 18% of the total nodes) have files

in just one substyle. Moreover, 90% of the nodes have files in 30 or fewer substyle

categories. These results are again positive as it shows that the number of SONs

to which most nodes may belong is small. In Figure 7.9 we show the bucket size

histogram, analogous to Figure 7.7. From the figure we can see that 222 of the

substyles (87% of the total) will have documents belonging to less than 400 nodes.

However, there are again a few substyle categories that will have documents that

belong to a large number of nodes, but this problem is not as bad as the one that we

had when using the style classification hierarchy by itself. In particular, the category

with the most number of nodes, “Alternative Pop Rock,” (which is represented by the

rightmost bar in the histogram) will have documents belonging to only 1031 nodes

(57% nodes). Even though the “Alternative Pop Rock” SON will have many nodes, it

is still half the size of a full Gnutella network that links all the nodes. In conclusion,

a combined style and substyle classification hierarchy is a good candidate for defining

SONs as the maximum number of SONs that a node needs to join is small and the

maximum number of nodes in a SON is also relatively small.

In Figure 7.10 and 7.11 we analyze the usage of Decades as a criteria for classifying

documents. From the figures we can see that decade is not a good classification

criteria. Although Figure 7.10 shows that most nodes have documents in only a

few decade buckets, Figure 7.10 shows that half the SONs will have more than 600

nodes. In fact, almost all nodes will have documents for the 70s, 80s, and 90s buckets.
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Figure 7.8: Distribution of Substyle Buckets
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Figure 7.9: Bucket Size Distribution for Substyle Hierarchy

Therefore, given that we do not have a way of subdividing those decades, we have to

reject the decade classification hierarchy.

In Figure 7.12, we show the distribution of tone buckets (for an explanation of
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Figure 7.11: Bucket Size Distribution for Decade Hierarchy

the graph, see the description of Figure 7.6). In the graph we can observe that the

median number of buckets for which a node has documents is 43, which will result in

nodes belonging to a high number of SONs. However, we can see in Figure 7.13 that
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Figure 7.12: Distribution of Tone Buckets

most buckets will contain documents belonging to a relatively small number of nodes.

Specifically, 60% of the buckets will have documents belonging to 625 or fewer nodes,

and 90% of the buckets will have documents belonging to 875 nodes. In conclusion,

using a classification hierarchy based on tone is borderline, and depending on the

specifics of the tradeoff between nodes maintaining a large number of connections and

the benefits of relatively small SONs, we may decide to use it or not. Nevertheless,

of all the classification hierarchies evaluated, the one based on style and substyle is

clearly superior and we will use it in the rest of our experiments.

7.5 Classifying Queries and Documents

In this section we describe how documents and queries are classified. Although the

problem of classifying documents and the problem of classifying queries are very

similar, the requirements for the document and query classifiers can be very different.

Specifically, it is reasonable to expect that nodes will join a relatively stable P2P

network at a low rate (a few per minute); while we could expect a much higher query

rate (hundreds or even more per second). Additionally, node classification is more
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Figure 7.13: Bucket Size Distribution for Tone Hierarchy

bursty, as when a node joins the network it may have hundreds of documents to be

classified; on the other hand, queries are likely to arrive at a more regular rate. Under

these conditions, the document classifier can use a very precise (but time consuming)

algorithm that can process in batch a large number of documents; while, the query

classifier must be implemented by a fast algorithm that may have to be imprecise.

The classification of documents and queries can be done automatically, manually,

or by a hybrid process. Examples of automatic classifiers include text matching [64],

Bayesian networks [67], and clustering algorithms [85]. These automatic techniques

have been extensively studied and they are beyond the scope of this dissertation.

Manual classification may be achieved by requiring users to tag each query with the

style or substyle of the intended results. For example, the user may indicate that

results for the query “Yesterday” are expected to be in the “Oldies” substyle; or that

results for the query “Like a rolling stone” are expected to be in the “Rock” style. If

the user does not know the substyle or style of the potential results, he can always

select the root of the hierarchy so all nodes are queried. Similarly, the node manager

can also select which SONs his node should join. Finally, hybrid classifiers aid the

manual classification with databases as we will see shortly in our experiments.
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Figure 7.14: Choosing SONs to join

7.5.1 Experiments

The goal of this experimental section is to show that we can classify documents and

queries and to study the precision of those classifications.

Evaluating our Document Classifier

Documents were classified by probing the database of All Music Guide at allmu-

sic.com [93]. In this database songs and artists are classified using a hierarchy of

style/substyle concepts equivalent to the leftmost classification hierarchy of Fig-

ure 7.5. Recall that for each Napster node used in our evaluation we had a list

of filenames with the format “directory/author-song title.mp3.” As a first step, the

document classifier extracted the author and the song title for the file. The classifier

then probed the database with that author and song and obtained a list of possible

song matches. Finally, the classifier selected the highest rank song and found its

style and substyles. If there were not matches in the database, the classifier assigned

“unknown” to the style and substyle of the file.

There were many sources of errors when using our document classifier. First, the

format of the files may not follow the expected standard, so the extraction of the

author and song title may return erroneous values. Second, we assumed that all files

were music (but Napster could be, and was actually used, to share other kind of files).

Third, users made misspellings in the name of artists and songs (to reduce the effect
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of misspellings, we used a phonetic search in the All Music database, so some common

misspellings did not affect the classification). Finally, the All Music database is not

complete, which is especially true in the case of classical music.

To evaluate the document classifier, we measured the number of incorrect classi-

fications that it made. We selected 200 random filenames and manually found the

substyles to which they belonged (occasionally using the All Music database and

Google as an aid to find the substyles of less known pieces). We then compared

the manual classification with the one obtained from our document classifier. We

considered a classification to be incorrect for a given document if the document clas-

sifier returned one or more substyles to which the document should not belong. Note

that an “unknown” classification from our classifier was not considered incorrect as it

would correspond to the root node of the classification hierarchy. In our evaluation,

we found that 25% of the files were classified incorrectly.

It is important to note that not every misclassified document will not be found

later on. To evaluate the true effect of document misclassification, we evaluated the

impact of an incorrect document classification on the assignment of nodes to SONs.

For this experiment, we selected 20 random nodes, we classified all their documents,

and assigned the nodes to all the substyles of their respective documents. We consid-

ered a classification to be incorrect for a given node if the node was not assigned to one

or more substyles to which the node should belong. In our evaluation, we found that

only 4% of the nodes were classified incorrectly. This result shows that errors when

classifying documents tend to cancel each other within a node. Specifically, even if

we fail to classify a document as, for example, “Pop Rock,” it is likely that there will

be some other “Pop Rock” document in the node that will be classified correctly so

the node will still be assigned to the “Pop Rock” SON. Nevertheless, misclassified

documents are still a problem for exhaustive queries, however, in practice almost all

queries in P2P systems are partial.

Evaluating our Query Classifier

For our experiments, queries were classified by hand. Queries were either classified

in one or more substyles, a single style, or as “music”(the root of the hierarchy). In
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our experiments we used queries obtained from traces of actual queries sent to an

OpenNap server run at Stanford [95]. Thus, by manually classifying queries, we are

“guessing” what the users would have selected from, say, a drop-down menu as they

submitted their queries.

Unfortunately, we cannot evaluate the correctness of the query classification method

(we, of course, consider our manual classification of all queries to be correct). Nev-

ertheless, we can study how precise our manual classification was (i.e., how many

times queries were classified into a substyle, a style, or at the root of the classifica-

tion hierarchy). We selected a trace of 50 distinct queries (the original query trace

contained many duplicates which the authors of [95] believed were the result of cycles

in the OpenNap overlay network) and then manually classified those queries. The

result was that 8% of the queries were classified at the root of the hierarchy, 78%

were classified a the style level of the hierarchy and 14% at the substyle level. As we

will see in Section 7.7, the distribution of queries over hierarchy levels will impact the

overall system performance, as more precisely classified queries can be executed more

efficiently.

7.6 Nodes and SON Membership

In Section 7.3 we presented a conservative strategy for nodes to decide which SONs

to join. Basically, under this strategy, nodes join all SONs associated with a concept

for which they have a document. This strategy guarantees that we will be able to find

all the results, but it may increase both the number of nodes in each SON and the

number of connections that a node needs to maintain. A less conservative strategy,

where nodes join some of all the possible SONs, can have better performance. In the

next subsection we introduce a non-conservative assignment strategy: Layered SONs.

7.6.1 Layered SONs

The Layered SONs approach exploits the very common zipfian data distribution in

document storage systems. (It has been shown that the number of documents in a
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website when ranked in order of decreasing frequency, tends to be distributed ac-

cording to Zipf’s Law [40].) For example, on the left side of Figure 7.14 we present

a hypothetical histogram for a node with a Zipfian data distribution (we’ll explain

the rest of the figure shortly). In this histogram we can observe that 45% of the

documents in the node belong to category c1, about 35% of the documents belong to

category c2, while the remaining documents belong to categories c3 to c8. Thus, which

SONs should the node join? The conservative strategy mandates that the node needs

to join SONc1 through SONc8 . However, if we assume that queries are uniform over

all the documents in a category, it is clear that the node will have a higher probability

of answering queries in SONc1 and SONc2 than queries in the other SONs. In other

words, the benefit of having the node belong to SONc1 and SONc2 is high, while

the benefit of joining the other SONs will be very small (and even negative due to

the overhead of SONs). A very simple and aggressive alternative would be to have

the node join only SONc1 and SONc2 . However, this alternative would prevent the

system from finding the documents in the node that do not belong to categories c1

and c2.

We propose Layered SONs, an approach where nodes determine which SONs to

join based on the number of documents in each category. To illustrate, consider again

Figure 7.14. At the right of the figure we present the hierarchy of concepts that will

aid a node in deciding which SONs to join. In addition, a parameter of the Layered

SON approach is the minimum percentage of documents that a node should have in a

category to belong to the associated SON (alternatively, we can also use an absolute

number of documents instead of a percentage). In the example, we have set that

number at 15%. Let us now determine which SONs the node with the histogram at

the left of Figure 7.14 should join. First, we consider all the base categories in the

hierarchy tree (c1 to c8). As c1 and c2 are above 15%, the node joins SONc1 and

SONc2 . As all the remaining categories are all below 15%, the node does not join

their SONs. We then consider the second level categories (c9, c10, and c11). As the

combination of the non-assigned descendants of c9, c3 and c4, is higher than 15%, the

node joins SONc9 . However, the node does not join the SON of c10 as the combination

of c5 and c6 are not above 15%. Similarly the node does not join the SONs of c11 as
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c7 and c8 are below the threshold. Finally, the node joins the SON associated with

the root of the tree (SONc12) as there were categories (c5, c6, c7 and c8) that were not

part of any assignment. This final assignment is done regardless of the 15% threshold

as this ensures that all documents in the node can be found (in our example, if we

do not join SONc12 we will not be able to find the documents in the SONs of c5, c6,

c7 and c8).

Note that the conservative assignment is equivalent to a Layered SON where the

threshold for joining a SON has been set to 0%. In this case, the node will join the

SONs associated with all the base concepts for which it has one or more documents.

7.6.2 Experiments

In this subsection we contrast the result, in terms of SON size and number of SONs per

node, of the conservative approach of Section 7.4.1 and the Layered SON approach.

As the Style/Substyle classification hierarchy was the clear winner in Section 7.4.1,

in this section we will only consider it and we will not analyze the other classification

hierarchies.
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In Figure 7.15, we show the distribution of style SONs when using Layered SONs

with a threshold of 35% and for the conservative assignment (labeled as 0% SON).

The graphs do not include the “root” category to which, in practice, all nodes belong.

From the graph, we can see that 616 nodes (about 34% of the total nodes) need to

belong to just one style. This result shows a significant improvement versus the

conservative assignment of Section 7.4.1 when only 24% of the nodes belonged to

one style. Moreover, 97% of the nodes need to belong to four or less style categories

(versus 90% when doing conservative assignments).

Using layered SONs also helps reduce the number of nodes per SON. Figure 7.16

shows a histogram for the size of the SONs (excluding the “root” SON). From the

graph we can see that by using Layered SONs we have a larger number of small SONs.

However, as before, we still have a problem with the “Rock” style (rightmost bar in

the graph) to which almost all nodes will have to belong. In conclusion, there is a

significant reduction in the size of SONs when using Layered SONs instead of the

conservative strategy. This reduction will lead to significant improvements in query

performance.
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Figure 7.18: SON Size Distribution for Substyle Hierarchy

We now consider Layered SONs based on the Style/Substyle classification hierar-

chy. In Figure 7.17 we show the size distribution of Style/Substyle SONs for Layered

SONs with a threshold of 10% and for the conservative assignment (labeled as 0%
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SON). From the graph, we can see that the Style/Substyle Layered SON and the con-

servative assignment strategy behave similarly in terms of the number of connections

required at each node. However, the advantage of Layered SONs can be seen in Fig-

ure 7.18 which shows the size histogram of SONs. When using Layered SONs, SONs

will have on average 135 nodes (versus 517 nodes for the conservative approach).

Moreover, the Layered SON does not have any SONs with more than 875 nodes,

while the conservative approach has 24. In conclusion, using Layered SONs with a

Style/Substyle hierarchy produces a significant improvement versus the conservative

assignment as we have much smaller SONs.

7.7 Searching SONs

As explained in Section 7.3, queries can be exhaustive or partial. In the case of an

exhaustive query, we need to find all matches, so all SONs that may contain results

need to be considered; while in the case of partial queries we do not need to consider

all of them. In this section, we explore the problem of how to choose among a set of

SONs when using Layered SONs.

7.7.1 Searching with Layered SONs

Searches in Layered SONs are done by first classifying the query. Then, the query is

sent to the SON (or SONs) associated with the base concept (or concepts) of the query

classification. Finally, the query is progressively sent higher up in the hierarchy until

enough results are found. In case more than one concept is returned by the classifier,

we perform a sequential search in all the concepts returned before going higher up

in the hierarchy. For example, when looking for a “Soft Rock” file we start with the

nodes in the “Soft Rock” SON. If not enough results are found (recall that partial

queries have a target number of results), we send the query to the “Rock” SON.

Finally, if we still have not found enough results, we send the query to the “Music”

SON. Note that there are multiple approaches when searching with Layered SONs. In

this chapter we are concentrating on a single serial one (as our objective is to minimize
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number of messages). However, there are other approaches such as searching more

than one SON in parallel (by asking each one for some fraction of the target results)

which may result in a higher number of messages, but will start producing results

faster.

Note that this search algorithm does not guarantee that all documents will be

found if there are classification mistakes for documents. Not finding all documents

may or may not be a problem depending on the P2P system, but in general, if we need

to find all documents for a query (in the presence of classification mistakes), our only

option is an exhaustive search among all nodes in the network. However, we will see

that with our document classifier (which has an per-document classification mistake

probability of 25%), we can find more than 95% of the documents that match a

query. In addition, this search algorithm may result in duplicate results. Specifically,

duplication can happen when a node belongs, at the same time, to a SON associated

with a substyle and to the SON associated with the parent style of that substyle. In

this case, a query that is sent to both SONs will search the node twice and thus it

will find duplicate results.

7.7.2 Experiments

We will now consider two possible SON configurations and evaluate their performance

against a Gnutella-like system. As before, we used the crawl of 1800 Napster nodes

made at the University of Washington, which were classified using the All Music

database. We assumed that the nodes in the network (both inside SONs and in the

Gnutella network) were connected via an acyclic graph and that on average each

node was connected to four other nodes. Although the assumption of an acyclic

graph is not realistic, we are considering acyclic networks as the effect of cycles is

independent of the creation of SONs. Cycles affect a P2P system by creating repeated

messages containing queries that the receiving nodes have already seen. Therefore,

an analysis of an acyclic P2P network gives us a lower estimate of the number of

messages generated.

To illustrate, we will first show the result for a single query when using a Layered
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SON for the style/substyle classification hierarchy. In Figure 7.19 we evaluate the

performance of the query “Spears” (classified manually as a “teen-pop”). The figure

shows the level of recall versus the number of messages transmitted. The level of recall

is the ratio between the number of matches obtained versus the number of matches

that would be obtained if we searched all nodes in the system. The data points in the

graph were obtained by averaging 50 simulations over randomly generated network

topologies. As indicated before, when using Layered SONs, we may obtain duplicate

matches. In such a case, we did not count duplicate results as new matches. Following

the search algorithm for Layered SONs, the query was initially sent to the “Teen

Pop” SON. We show as a dotted line in the graph the recall level versus message

performance of that SON. After the “Teen pop” SON is searched (consuming 232

messages and yielding 37% of the matching documents), the system searches the

parent of “Teen pop”, i.e., the “Rock” SON. We show the recall level versus message

performance of this next SON as a dashed line. Finally, we show as a solid line the

recall level versus message performance of a Gnutella-like system that searches all

nodes (in an order that is independent from the content). From the graph, we can see

that the Layered SON setup is able to find results with significantly fewer messages
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(and therefore much faster) than the Gnutella network. Specifically, the SON-base

system was able to find 20% of the results with only 92 messages, while it took 285

messages for the Gnutella system to reach that same level.

As an additional observation note that the Layered SON system does not find all

results available. While Gnutella finds 100% of the results in the system, Layered

SON only found 97% of the results. The reason is that the document classifier made

some mistakes and some nodes (with Spears documents) were not assigned to the

“Rock” or “Teen Pop” SONs. If we would like to find the remaining 3% of the

documents, we would have to send the query to the “Music” SON (which contains

all nodes). Such an action would have the same cost as a standard Gnutella search

(plus the overhead of having searched in the “Teen Pop” and “Rock” SONs before).

Of course in practice most users will never want to perform an exhaustive search [11].

Let us now analyze the performance of Layered SONs with a stream of queries. For

this experiment we used 50 different random queries obtained from traces of actual

queries sent to an OpenNap server run at Stanford [95]. These queries were classified

by hand as described in Section 7.6. Queries classified at the substyle level were sent

sequentially to the corresponding SON (or SONs), and then to the style-level SON.
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Queries classified at the style level, were first sent sequentially to all substyles of that

style, and then to the style level. Queries classified at the root of the hierarchy were

sent to all nodes. We measured the level of recall, averaged for all 50 queries, versus

the number of messages sent in the system. As in the previous experiment, the graphs

were obtained by running 50 simulations over randomly generated network topologies.

In Figure 7.20, we show the result of this experiment. The figure shows the

number of messages sent versus the level of recall. As with the case of a single query,

Layered SONs were able to obtain the same level of matches with significantly fewer

messages than the Gnutella-like system. Again, Layered SONs do not achieve recall

levels of 100% in general (average maximum recall was 93%) due to mistakes in the

classification of nodes.

The results of Figure 7.20 show the average performance for all query types (dotted

line). However, if a user is able to precisely classify his query, he will get significantly

better performance. To illustrate this point, Figure 7.20 also shows with a dashed

the number of messages sent versus the level of recall for queries classified at the

substyle level (the lowest level of the hierarchy). In this case, we obtain a significant

improvement versus Gnutella. For example, to obtain a recall level of 50%, Layered

SONs required only 461 messages, while Gnutella needed 1731 messages, a reduction

of 375% in the number of messages. Moreover, even at high recall levels, Layered

SONs were able to reach a recall level of 92% with about 1/5 of the messages that

Gnutella required.

Note that the shape of the curve for the message performance of Gnutella is slightly

different for all queries and for queries classified at the substyle level. The reason for

this difference is very subtle. We were only able to classify very precisely (i.e. to the

substyle level) queries for songs that are very well known. Due to their popularity,

there are many copies of these songs throughout the network. Therefore, a Gnutella

search approach will have a high probability of finding a match in many of the nodes

visited, making the flooding of the network less of a problem than with more rare

songs. Nevertheless, even in this case, Layered SONs performed much better than

Gnutella.
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7.8 Discussion

In this chapter we studied how to improve the efficiency of a peer-to-peer system, and

in particular of a federation of ARs, by clustering nodes with similar content in Seman-

tic Overlay Networks (SONs). We showed how SONs can efficiently process queries

while preserving a high degree of node autonomy. We introduced Layered SONs, an

approach that improves query performance even more at a cost of a slight reduction in

the maximum achievable recall level. From our experiments we conclude that SONs

offer significant improvements versus random overlay networks, while keeping costs

low.
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8.1 Conclusions

Many traditional library materials, such as preprints, scientific data, scholarly jour-

nals, and even books, have moved on-line. This corpus is a wealth of digital informa-

tion that is worth preserving. The trend of moving library information to electronic

media is likely to continue in the future as on-line access has become the preferred

means of keeping up with new research in many fields [22]. Therefore, preserving

electronic information will only become more critical as more and more information

is created only in digital format.

Electronic information is inherently perishable: if we do nothing, it will not be

preserved by accident. The fragility of digital media goes well beyond that of paper.

While paper can last for hundreds of years (if it is of good quality and has the proper

environment), digital documents can only be accessed at best for a few decades, unless

we take action. The fragility of digital documents is the result of the continuing

evolution of the components (such as technologies and formats) necessary to access

them. We have already witnessed to technologies and formats that seemed to be

ubiquitous being replaced by newer, and frequently incompatible, substitutes. To

illustrate, consider the 5 1/4 inch floppy disk; omnipresent for 15 years, it has been

completely replaced by 3 1/2 inch disks. This replacement of technologies and formats

is continuing. In fact, JPEG, the standard for images that is used by most digital

cameras, is in the process of being replaced by JPEG 2000, a higher quality, higher

compression, image format. If JPEG is rendered obsolete by JPEG 2000, in just a

few years, it will be difficult for users to look back and see the pictures that they are

taking today [82].

In this dissertation, we addressed the problem of data preservation by building

a reliable archival repository that protects digital information from failures. The

repository takes actions to protect the documents through participation in a Peer-to-

Peer federation of repositories that store copies of each others’ data. In addition, we

designed the repositories so that they could support efficient search and access of their

content. This dissertation was divided into three parts: (i) design and evaluation of

archival repositories, (ii) a reference architecture and algorithms for ARs, and (iii)
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efficient access to a federation of ARs.

In the first part of this dissertation, we described in detail the design and evalua-

tion of Archival Repositories. First, we presented a comprehensive model for an AR,

including options for the most common recovery and preventive maintenance tech-

niques. Then, we introduced ArchSim, a powerful simulation tool for evaluating ARs

and for studying available archival strategies. We then used the model and ArchSim

to analyze a hypothetical Technical Report repository operated between two univer-

sities. Through this analysis, we evaluated how AR factors, such as disk reliability,

handling of format failures, and preventive maintenance, affect the reliability of the

system. In addition to reliability, the most important factor in evaluating an AR is

cost. Therefore, we also studied in detail how to make cost-driven decisions about

archival repositories.

In the second part of this dissertation, we presented a reference architecture and

algorithms for ARs. In particular, we presented the Cellular Repository Architecture,

an architecture for long-term archival storage of digital objects. This architecture

allows the construction of a simple, yet powerful, archival repository by using signa-

tures as object handles, not allowing deletions, having awareness services in all layers,

and using only disposable auxiliary structures. We argued that this architecture is

well suited for a heterogeneous and evolving environment because each site needs only

to agree on some very simple interfaces, a signature computation function, and some

simple object header structures.

We also studied the algorithms for awareness services. These algorithms are fun-

damental for our Cellular Repository Architecture as they are present at every layer.

The main contribution of this study was a unified view of the different awareness

algorithms. Specifically, we presented awareness schemes as variants of two unifying

algorithms (UNI-AWARE and DIST-UNI-AWARE). This approach made differences

in assumptions and performance of the different algorithms very apparent. Further-

more, such a unified view of awareness mechanisms could be extremely important for

a client that must deal with stores that implement different schemes.

In the third part of this dissertation, we focused on how to provide efficient searches

in a massive peer-to-peer federation of nodes. We presented two ways of achieving
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better performance: Routing Indices and Semantic Overlay Networks. Routing In-

dices achieve greater efficiency by placing compact indices at each node. We presented

three RI schemes: the compound, the hop-count, and the exponential routing indices,

and evaluated their performance via simulations. We found that RIs can improve per-

formance by one or two orders of magnitude vs. a flooding-based system, and by up

to 100% vs. a random forwarding system.

Semantic Overlay Networks improve the efficiency of a peer-to-peer system by

clustering nodes with similar content in the same overlay network. We showed how

SONs can efficiently process queries while preserving a high degree of node autonomy.

We introduced Layered SONs, an approach that improves query performance even

more at the cost of a slight reduction in the maximum achievable recall level. It is

important to notice that the results in the third part of this dissertation can help

improve the search performance not only of ARs but also of current and future P2P

systems.

8.2 Future Work

Many important issues related to long-term archiving of information remain unex-

plored in this dissertation. Interesting questions can arise in the design and imple-

mentation of an Archival Repository based on the techniques presented here. Below,

we discuss such issues, and outline directions for future research.

Preserving the meaning: Our focus in this dissertation was data preservation

(preservation of bits). Although preserving the bits is a fundamental and necessary

step for meaning preservation, without a way of preserving the meaning, digital doc-

uments would not be not fully protected. Three solutions have been proposed for

the problem of meaning preservation: migration, which consists of transcribing doc-

uments from old formats into new formats; emulation, that allows applications built

for obsolete hardware to run in new machines; and encapsulation, that wraps the dig-

ital document with metadata that allows the recreation of the hardware and software

necessary to understand the document. However, all these solutions are themselves
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vulnerable to obsolescence and, to ensure long-term preservation, require periodic

“fixes,” such as, for example, building an emulator for the now old machine for which

an emulator of an older machine was built. As we did with data preservation the study

of the design issues and cost implications of these (and other) meaning preservation

techniques are a necessary step for their successful deployment. To do this study we

can use the framework and design techniques presented in this dissertation, but new

parameters and an obsolescence model are needed, making meaning preservation an

open area of research.

Intellectual Property: In our architecture, digital objects will be served beyond

the organization that runs the repository or that owns the information. This means

that the repository must understand and enforce intellectual property laws, and must

offer its clients a variety of access and payment options. At the same time, any

intellectual property mechanism must allow access to the document in the case of

disappearance of the holder of the intellectual property rights. Two possible (and

complementary) approaches to enforce intellectual property rights are access control

and digital marking. Access control makes use of encryption and authentication to

ensure that digital objects are provided only to trusted participants. Digital marking

consists of watermaking or fingerprinting documents, so the source of a copy can be

determined; thus, if the copy were illegal, the source of it could be prosecuted.

Implementation of a large-scale Testbed System: A full deployment of a

testbed AR system would allow the checking of parameter values used in the models

presented in this dissertation. The results from a testbed system would be invaluable,

especially for the measurement of the short and medium-term archival capability and

cost of the system. However, researchers and developers of testbed systems need to

recognize that a testbed system cannot accurately measure the long-term attributes

of the archival system as they would need to run for so long that the results obtained

from them would be useless.
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Replication Techniques: In our work, replication was achieved by creating full

copies of the documents. As a result, given a certain level of archival guarantee,

we frequently need to round up the number of copies needed to ensure the given

guarantee. This rounding up may result in generating more copies than needed. For

example, consider 3 sites, each with a 1/10 probability of failing. If we make a copy of

a document in two sites, the probability of not losing the document (due to a failure

of both sites) is 1/100. If we make a copy in all three sites, then the probability of not

losing the documents reduces to 1/1000. Therefore, if we need an archival guarantee

in the range (1/100, 1/1000], we would have to make 3 copies. To avoid rounding up,

instead of creating full copies, we can create “partial copies,” i.e., copies where more

than one site is required to re-create the document. Specifically, we could divide the

document in 3 pieces and place 2 pieces in each of the three sites in a way that we

could always reconstruct the document if 2 sites were available. In this case, we would

need 2/3 of the space required by the full copies with a probability of failure of 0.003.

In the literature there are many ways to generate partial copies (e.g., dividing the

documents or using xor). However, the tradeoffs and implications on archival systems

have not been studied.

Untrusted Federation of Local Repositories: For the purpose of this disser-

tation, we adopted an optimistic view where participants do not purposely try to

“sabotage” the system (e.g., destroy all copies of a specific document). Although this

assumption is not unrealistic when considering a federation of Digital Libraries, it is

definitely not realistic in a less controlled environment. Although some research done

in the area of Peer-to-Peer networks is applicable to this problem [19], more work

is needed. Possible research directions include: reputation systems, where sites are

ranked (and trusted) according to the good or bad behavior that they have shown

in the past; authentication, where only trusted participants are allowed into the net-

work; encryption and digital signatures, so a node can determine if messages and

documents come from trusted nodes; and “imprecise” algorithms, such as the ones

used in LOCKS [66], to prevent outsiders from easily determining the identity of all

nodes or all the locations of a document.
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• AR Description

– Initial collection: numdoc documents. Each document, d, will have the

following four materializations:

∗ 〈d,MIT, diski, formj〉,

∗ 〈d,MIT, diskk, forml〉,

∗ 〈d, Stanford, diskx, formj〉,

∗ 〈d, Stanford, disky, forml〉.

Where MIT and Stanford are the two sites; diski, diskk, diskx, and

disky are different storage devices; and, formj and forml are two different

formats.

– Number of components and types: nsto storage devices, nform formats, 2

sites.

– Failure dependency graph: site → disk, when the disk is in the given site.

• Distributions

– Disk Failure distribution during access: U(1/φsto)

– Format Failure distribution during access: U(1/φform)

– Site Failure distribution during access: U(1/φsite)

– Disk Failure distribution during archival: U(1/φsto)

– Format Failure distribution during archival: U(1/φform)

– Site Failure distribution during archival: U(1/φsite)

– Disk Failure Detection distribution: instantaneous

– Format Failure Detection distribution: instantaneous

– Site Failure Detection distribution: instantaneous

– Disk Repair distribution: instantaneous

– Format Repair distribution: instantaneous

– Site Repair distribution: instantaneous
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– Document creation: numdoc documents at startup, then no documents are

created.

– Document access rate: irrelevant as failure distribution during access is

the same as during archival.

– Access duration rate: irrelevant as failure distribution during access is the

same as during archival.

– Document selection: uniform over the numdoc documents.

• Policies

– Document Creation policy: for each document, four materializations are

created, 2 in each site. In each site, each materialization is created in a

different disk and in a different format.

– Document to Materialization: read from any materialization.

– Failure detection algorithm: complete scan of all disk, formats, and sites

every τsto, τform, and τsite days, respectively.

– Damage Repair algorithm: discard bad component and replace with new

component taking δsto, δform, and δsite days, for disks, formats, and sites

respectively.

– Failure prevention algorithm: none

• ArchSim Parameters

– Stop Condition: when losing the first document.

– Simulation time unit: days.
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B.1 Styles

Rock Rap Electronica Comedy

Jazz Latin Country Easy

World Blues Gospel Vocal

Newage Class Soundtrack Reggae

Folk Bluegrass Avntg Misc

Cajun Child Celtic Holid

Spokn Gay
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B.2 SubStyles

Alternative Folk Alternative Pop/Rock Pop/Rock

Hard Rock Post-Grunge Hardcore Rap

Album Rock Heavy Metal Soft Rock

Club/Dance Urban Gangsta Rap

Singer/Songwriter East Coast Rap Psychedelic

Rock and Roll West Coast Rap Adult Contemporary

Song Parody Television Music Rap-Metal

Indie Rock Roots Reggae Punk-Pop

New Wave Prog-Rock/Art Rock Sketch Comedy

Adult Pop/Rock House Punk Revival

R and B Electronica Dance-Pop

Alternative Metal G-Funk Teen Pop

Pop Novelty Southern Rap

Third Wave Ska Revival Ska-Punk Folk-Rock

Arena Rock Latin Continuum Trance

Musical Comedy Rap-Rock Swing

College Rock Caribbean Grunge

Techno Quiet Storm Latin Pop

Contemp. Country Ragga Post-Rock

Post-Punk Ska Rocksteady

Country-Pop Pop-Metal Golden Age

Dirty South Euro-Dance Jam Bands

Progressive Bluegrass Experimental Techno Rock

Pop-Rap Trad Rock Dancehall

Political Reggae Comedy Rock Hard Bop

Blues-Rock Traditional Pop Smooth Soul

Pop-Soul Euro-Pop Punk

Glam Rock Experimental Ro Alternative Rap

cont’d.
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Dark Ambient Hardcore Punk Indie Pop

Funk Vocal Pop Alternative Dance

Trip-Hop Traditional Country British Blues

Synth Pop Neo-Traditionalist Country Standup Comedy

Soul New Jack Swing Proto-Punk

Modern Electric Blues New Age Neo-Psychedelia

Jazz-Rock Tropical Ethnic Fusion

Orchestral Pop IDM Illbient

Jamaica Surf Industrial Metal

Texas Blues Southern Soul Traditional Bluegrass

Classical Crossover Jazz Vocal Jazz

Film Music Movie Themes British Metal

Britpop Motown Show Tunes

CCM Mood Music Old-Timey

Country-Rock New Traditionalist Contemporary R and B

Emo Funk Metal Instrumental Pop

Hair Metal Progressive Big Band Prank Calls

Underground Rap Urban Folk Power Pop

Progressive Trance Uptown Soul Christian Punk

Standards Contemporary Reggae American Underground

Skatepunk Progressive Country Space Rock

British Invasion Mexico Brill Building Pop

Sunshine Pop Mixed Media Ambient Techno

Honky Tonk Teen Idol Space

Country Comedy Shock Jock Disco

British Psychedelia Rave Tejano

Funky Breaks Blue-Eyed Soul Blue Humor

Dirty Rap Modern Electric Texas Blues Nashville Sound

Worldbeat ”Jungle/DrumN Bass” Big Band

Doo Wop Political Rap Techno-Tribal

cont’d.



B.2. SUBSTYLES 229

Rock en Espanol Slowcore Country-Folk

Baroque Pop Deep Soul Progressive House

Soul-Jazz Soundtracks Black Gospel

Psychedelic Pop Anti-Folk Experimental

Electric Texas Blues Cowboy Fusion

Lo-Fi Experimental Big Band Garage Rock

Morning Radio Observational Humor British Trad Rock

Acid House Outlaw Country Creative Orchestra

Rockabilly Big Beat Contemporary Bluegrass

Bubblegum Jangle Pop Nostalgia

Goth Rock Southern Rock Impressionist

West Coast Blues Avant-Garde Jazz Progressive Electronic

Bop Political Folk Americana

Spain Blaxploitation AM Pop

Traditional Folk Country Ambient

New Orleans Jazz New York Punk Dream Pop

Adult Alternative Philly Soul Jazz-Pop

Tin Pan Alley Pop Contemporary Blues Ambient Pop

Bluegrass Junkanoo Merengue

French Rock Classic Jazz Chicago Soul

Nueva Trova Nueva Cancion Death Metal/Black Metal

Computer Music Girl Group Mod

Cuba Latin Rap Heartland Rock

Soundtrack Bolero Slide Guitar Blues

Vocal Northern Soul Jazz-Rap

Post-Bop Electric Chicago Blues Contemporary Instrumental

Boogie Rock Avant-Garde Merenhouse

Pop Underground Roots Rock 20th Cent. Classical

United States of America Party Rap Rap

Retro-Soul New Orleans R and B Ballads

cont’d
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India Raga Jazz-Funk

British Heavy Metal French Pop Progressive Folk

Electronic British Punk Smooth Jazz

Aussie Rock Space Age Pop Hip-Hop

Country Gospel Italy Western Swing Revival

L.A. Punk Prewar Country Blues British Folk

Jump Blues Thrash Noise-Rock

Acid Jazz Salsa Indian Classical

Speed Metal Alternative Country Prewar Blues

Folk-Pop Trinidad Dominican Republic

Tribal-House Mod Revival British Folk-Rock

Celtic Rock Turntablism New Romantic

Contemporary Folk Christian Rock Noise Pop

Surf Revival Inspirational Modern Electric Chicago Blues

Bachata-Merengue World Fusion Dixieland

Traditional Gospel France Africa

Tech-House Delta Blues Solo Instrumental

Chicago Blues Rai Jesus Rock

Europe Instrumental Rock Spy Music

Chamber Music American Popular Song Blues Revival

Musical Theater Contemporary Jazz Sophisti-Pop

Asia TV Soundtrack Jazz

Sweet Bands Jazz-House Sahel

Nature Polka Shoegazing

Ragtime Zouk Straight-Edge

Latin Jazz Comedy Freestyle

Hong Kong Pop Dub British Garage

Senegal Gabba Gospel

Marches Cool Cast Recordings

Brazilian Jazz Electro Traditional Scottish

cont’d



B.2. SUBSTYLES 231

Puerto Rico DJ Goth Metal

Blues Oi! Folk-Blues

Dance Bands New Orleans Blues Euro-Rock

Bhangra Ivory Coast Merseybeat

Hi-NRG Neo-Classical Indian Diaspora

Free Jazz Modern Acoustic Blues Comedy Rap

Pub Rock Brazil Cabaret

Electric Country Blues Piedmont Blues Free Improvisation

Scandinavian Metal Television Soundtracks Hungary

Christian Metal Jewish Music Riot Grrrl

British Rap Italian Pop Hungarian Folk

Acappella New Zealand Rock Folk Revival

Celtic Folk Traditional

Ecuador Middle East Bakersfield Sound

Hardcore Techno Praise and Worship Celebrity

Goa Trance No Wave Urban Blues

Bass Music Israel Childrens

Greece Calypso Contemporary Singer

Hawaii Yiddish Cajun

Algeria Ethiopia Jewish Folk

Industrial Dance Chamber Pop Thailand

Close Harmony Conjunto East Coast Blues

Instrumental Country Soca Choral

Prewar Gospel Blues Classic Female Blues Lounge

Afro-Cuban Jazz Singalong Harmonica Blues

Christian Rap Power Metal Canada

Gypsy Mali Electric Blues

Read-Along Stories Kora Contemporary Gospel

cont’d.
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Acoustic Texas Blues Chamber Jazz Frat Rock

Afro-Cuban Irish Folk Chanukah

Math Rock Indian Pop Guitar Virtuoso

Neo-Traditional Folk Latin Rock Soul-Blues

Twee Pop Afro-Pop England

Neo-Bop Paisley Underground Christmas

Acid Rock Traditional Celtic Experimental Ambient

Electric Harmonica Blues C-86 Beach

Norteno Musicals Scotland

Social Commentary Ranchera Ambient Breakbeat

Progressive Metal Poetry Exotica

Modern Creative Swedish Pop/Rock Original Score

Industrial Urban Cowboy Alternative CCM

Alternative Country-Rock American Punk Reggae-Pop

Old School Rap Sea Shanties Latin Dance

Beat Poetry Corrido Folksongs

Country Boogie Canterbury Scene Noise

Piano Blues Minimalism Obscuro

Satire Detroit Rock Happy Hardcore
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B.3 Tones

French Antilles Brown-Eyed Soul Skiffle Ireland

Theatrical Stylish Playful Energetic

PartyCelebratory Confident Earnest Rowdy

Aggressive Witty Raucous Laid-Back/Mellow

Rousing Quirky Reflective Sophisticated

Passionate Humorous Fun Sentimental

Brash Poignant Thuggish Exuberant

Freewheeling RefinedMannered Irreverent Organic

Boisterous Cheerful Trippy Visceral

Menacing Hostile Wistful Melancholy

Wry Volatile CynicalSarcastic Intense

Rollicking Soothing Whimsical Ominous

Cathartic Summery Sexy Romantic

Carefree Detached Angst-Ridden Provocative

Earthy Brooding Outrageous Bittersweet

Reckless Sleazy Angry Harsh

Sweet Intimate Manic Sexual

TenseAnxious Fiery Gentle Snide

Elegant Ironic Somber Druggy

Happy Hypnotic Nihilistic Eerie

Cerebral Nocturnal Restrained Joyous

Gloomy Complex Acerbic Yearning

Plaintive Bleak Autumnal Wintry

Innocent Searching Spiritual CalmPeaceful

Ethereal Campy Messy Paranoid

Malevolent Bitter Lush Precious

Sad Reserved Ambitious Gleeful

Clinical Self-Conscious Dramatic Smooth

Reverent Urgent Naive Hedonistic

cont’d.
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AmiableGood-Natured Rebellious Silly Sensual

Rambunctious Literate Confrontational Street-Smart

Enigmatic Springlike Gritty Sparse

Indulgent Delicate Elaborate Weary


