
Pergamon
Information Systems Vol. , No. , pp. 1{, 1994

Copyright c 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0306-4379/94 $7.00 + 0.00

A SURVEY OF SEMI-AUTOMATIC EXTRACTION AND TRANSFORMATION

Arturo Crespo1, Jan Jannink1, Erich Neuhold2,Michael Rys3 and Rudi Studer4

1Stanford University, Stanford, CA 94305, USA
2Darmstadt U. of Technology, GMD-IPSI, D-64293 Darmstadt, Germany

3Microsoft Corp., One Microsoft Way, Redmond, WA 98052
4University of Karlsruhe, Institute AIFB, D-76128 Karlsruhe, Germany

Abstract | This paper studies the extraction and transformation problem on documents. Solving
this problem entails extracting the structures contained in a document and transforming the structures
to make them available for further automatic processing. This paper provides an overview of methods
and tools for extracting information and transforming the extracted information as required by the
end-user. The overview is based on a taxonomy that classi�es both characteristics of the available
sources and properties of the extraction techniques. The paper concludes with a perspective on future
developments, including a discussion of tools with learning capabilities and the role that XML and
other related standards will play in the future.

1. INTRODUCTION

The unprecedented growth in the amount of information available in electronic form has brought
upon us the understanding that our capacity to read, select, evaluate and synthesize information
is quite limited. One way of expanding this limit is to make use of tools that can extract and
transform electronic information. For instance, search engines and shopping bots are services that
help us �nd the pages and products we want among the millions of pages and thousands of vendors
on the World Wide Web.

The main challenges in creating such Extraction and Transformation tools are: (i) Information is
o�ered in a variety of forms and expressed in a variety of contextual frameworks. (ii) Di�erences in
structure, correctness and regularity make understanding and interpreting the information di�cult.

We can readily �nd examples of these di�culties on the Web. Speci�cally, despite the fact that
personal home pages usually contain quite similar information, the individual tastes in organizing
and structuring that information vary widely. Likewise, the informational pages of companies'
web sites contain very similar types of information structured each in their own way. Automatic
processing is especially useful when dealing with very large amounts of information that makes
systematic human reading and interpretation impractical, tedious, and error prone.

Our model for tools that aid in the extraction and transformation (henceforth E&T) task obeys
the following de�nitions. An extraction process accesses data from one or more sources, and applies
extraction rules to the source data as the tool accesses it. The set of these rules form an extraction

description. Some descriptions are static, others change through a rule generation process initiated
in response to source changes. To export consistent data and schema information to the end-user,
the tools apply transformation rules based on the application of the end-user.

In summary, the goal of information processing tools de�ned above is to provide methods for
extracting the hidden structures from a source, identifying the information contained in those
structures, selecting the information relevant for a speci�c purpose, and transforming the selected
information into coherent output structures that can easily be processed further by humans as well
as computers.

However, we should not forget that information is ultimately intended for the human consumer.
Computer processing, at best, represents an intermediate step, transforming, �ltering, abstracting
and presenting information required at a speci�c point of time and place by the human information
seeker. Search engines on the web are early and, for the purpose of helping to locate information,
sometimes quite successful examples of automatically extracting information from the vastness
of the World Wide Web and o�ering it in a uni�ed format to the human information seeker.

1



2 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

Their information processing power however is very limited as they are incapable of restructuring,
�ltering, or processing the contents of the information elements such as web pages, parts of pages
or multi-page documents they identify.

Three principal approaches emerge from the body of work of the last few years to extract and
transform information available on the Internet and other distributed systems:

Explicit Schema Many sources describe the structure of their contents quite explicitly with a
database schema. Examples of this are traditional databases, both relational and object
oriented, and even some more specialized formats, such as literature references (e.g., the
Chemical Abstracts: CA, CAPLUS, CASREACT, REGISTRY.) An explicit schema appears
to make the solution to the problem of extracting information trivial. In reality, the problem
is still complex because of two factors. First, di�erent databases may use di�erent schema
languages for these descriptions. Second, even when using the same languages, many struc-
turally di�erent ways of expressing the same information are possible. The problems of
working with multiple databases and schemas have been identi�ed in the literature by names
such as interoperability [34], heterogeneous schema integration [19], global schema [31], and
view integration [6]. All of these methodologies attempt to provide for the application and
the users a uni�ed and therefore simpli�ed interface that allows for easier human interpre-
tation and easier automatic processing of a multiplicity of databases. This �eld has been
extensively explored in the literature, since this research deals with, in a sense, fully struc-
tured data. In the remainder of the paper, we will not further deal with those issues besides
giving a brief overview in Section 2.

Information Retrieval Digitized textual and multimedia information usually does not have an
explicit well-de�ned structure. Sections, paragraphs, indentations, lists, tables, as well as
�gures, graphs, images, and even dynamic components such as audio, video, simulations are
described by markings for layout and presentation purposes. Examples of this formatting
include MS Word, HTML, etc. These layout markings do not describe or even characterize
what is contained in the documents, but are exploited in various extraction systems [16].
Information retrieval, computer linguistics and, more recently, image, graphics, audio and
video analysis techniques, have been used to locate documents in a large set and interpret
the contents of such documents. Approximate reasoning techniques for making the most
relevant information available for the information seeker are frequently involved. Web search
engines [14] serve as basic instances of such tools. The many IR publications, such as, [18]
and IR systems present more advanced approaches, frequently employing context informa-
tion (knowledge bases, thesauri or alternatively grammatical principles of natural language),
as well as statistical exploration to better recognize relevant information and constrain the
problem search space. Deeper analysis is achieved by computer linguistic approaches. In
restricted domains, those approaches have been quite successful, as in the information tech-
nology domain [24] or in the message understanding approach for news articles on terrorist
incidents [30]. However, in broader domains, scalability and functionality are still missing.
Muslea [40] provides a thorough overview of such work as applied to the web and networked
information. Because the computer linguistic approaches have been analyzed and compared
in the past, we will not further dive into this �eld besides giving a brief overview in Section 2.

Implicit Structures In many types of documents, a signi�cant amount of structural information
actually exists, but is only given implicitly. In this case, a human expert of the domain is
readily able to identify those structures. Examples of this implicit structure are a letter,
a literature reference, a resume, and the description of works of art. These structures are
readily recognized despite the fact that many di�ering versions exist. For computer analy-
sis those structures, however, are not su�ciently identi�ed. From this situation, the wide
research and development �eld of structural extraction recently emerged. Such information
is variously called unstructured, semistructured, partially structured, or probably most cor-
rectly implicitly structured [1]. Approaches to make these structures explicit and make them
available for human and, most importantly, computer processing vary widely. Successes are



A Survey of Semi-Automatic Extraction and Transformation 3

very di�cult to judge due to widely varying terminologies, taxonomies and metrics. How-
ever, some of the results of such structural extraction processes have shown themselves quite
successful and scalable to large applications [13]. In the main body of this paper, we will
provide an analysis of the problems encountered and the solutions proposed or respectively
still to be found for the E&T problem. We will present a taxonomy for the di�erent aspects of
abstraction, describe its properties and already existing related work and results. However,
due to the explosive growth of research in this area, it is impossible to achieve completeness
in our literature references.

It is worthwhile to observe that developments like the advent of SGML [21] and the rapid ac-
ceptance of XML [22] o�er hope that in the future some of the information will be generated with
more explicit structuring information and that the E&T task can be simpli�ed to just transforma-
tion. However, as the database schema interoperation �eld shows, even explicit structuring leaves
a lot of di�cult problems to be solved due to multiple ways of structuring a schema and content
and the improbability of agreement on a single universal schema.

Solutions to the E&T problem rely on the fact that in many cases documents do not appear
individually but that a large number of only slightly varying documents exist. As mentioned
before, letters, references, descriptions, even things like journal articles or newspaper clippings
have similar but slightly varying structures. Slowly developing strategies to represent \the right"
corporate image on all web pages of an organization also lead to groups of similarly structured
documents. Two approaches to E&T are distinguished and will be elaborated upon in more detail
in the next paragraphs.

The �rst approach is to have a human domain expert develop the necessary extraction, transfor-
mation and �ltering algorithms for each of those classes of documents. Although this process leads
to high quality solutions, it has been shown to be labor intensive, error prone, time consuming and
frequently prohibitively expensive. These di�culties arise especially in attempts to reuse earlier
speci�cations when slight variations in the document structures are encountered. These variations
arise through errors, newly encountered variations in the information contents, or requirement
changes over time.

The second approach starts with an initial structural and transformational description together
with learning mechanisms in order to develop systems capable of dealing with both slightly varying
sets of documents and document structure evolution over time. Users of such systems accept that
the learned structures are probably not always the most e�cient and that complex situations
may not be handled. For this reason, even powerful and scalable mechanisms will require human
intervention. These semi-automatic learning techniques appear to be the best approach to relieve
some of the burden from humans.

This paper is organized in four main parts. First, in Section 2, we briey describe the Schema
Integration and Linguistic approaches. Then, in Section 3, we present a taxonomy of source
properties with relation to the extraction description generation. In Section 4, we classify the
generation of extraction descriptions. Finally, in Section 5, we present interesting directions for
future work on the E&T problem.

2. FIRST APPROACHES TO THE E&T PROBLEM

2.1. Schema Integration and Interoperation

Syntactic and semantic transformations have been investigated in depth for database inte-
gration. This involves mainly two kinds of transformations: data model translation [20] and
view/schema integration [5]. Both types of transformation assume that there exists a complete,
unambiguous and regular schema comprising the static model as well as the integrity constraints.
Data model translation is concerned with generating transformations from a source data model
into a target model in such a way that the semantics of the original model are preserved. Exam-
ples of data model translation are the generation of relational schemas with dependencies from
an entity-relationship design [43], the generation of semantically more explicit schemas from re-
lational schemas [8, 60], translations between object-oriented and entity-relationship models [20],



4 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

and more generally between abstract models with partially ordered modeling capabilities [35]. The
goal of view and schema integration is the generation of transformation rules that map two or
more autonomously-designed database schemas having the same data model into a uniform inte-
grated view. In this process, redundant schema portions are detected and removed, and conicts
are resolved in such a way that the integrated schema can represent all the original information
without loss. Early work on the relational model [6] focused on resolving conicts among dif-
ferent database schemas arising from imposing inter-schema constraints on top of intra-schema
constraints, and developed means for integrating heterogeneous attributes [9]. Recent work on
integrating object-oriented schemas has analyzed the formal properties of integrated schemas with
respect to information preservation [39] and extended the transformational expressiveness of rules
to cope with more kinds of modeling di�erences [53, 52, 31, 9].

2.2. Linguistic Analysis

There exists a long research tradition in computer linguistics for the problem of extracting the
meaning from free texts. Typical linguistic approaches rely on a syntactical and semantical analysis
of the given text source. In the context of information extraction, the problem to be tackled is
much simpler than the full linguistic extraction problem for two reasons. First, those parts of the
text that are not relevant to the end user may be ignored. Second, the information to be extracted
is typically simple and has some structure [40].

Linguistic-based approaches to the E&T problem exploit to a varying degree lexical, syntactical
and semantic information when parsing the source text. Since there are many di�erent systems
being described in the literature, we will not aim for a comprehensive overview, but rather sketch
some main approaches that have been developed in recent years.

To describe the text parts to be extracted from the source text, the AutoSlog system [47]
uses a combination of syntactical patterns, such as, <subject> passive-verb, and semantic
information, like <subject> physical-target. In the former case, AutoSlog requires that the
verb be in passive form, in the latter, that the subject be a physical target.

Within the PALKA system [30], meaning frames and phrasal patterns are exploited for guiding
the extraction process. Meaning frames specify semantic constraints for the information to be
extracted, like agent: ANIMATE, whereas phrasal patterns de�ne the syntactical structure of the
matched sentence, as in, (target) was bombed by (agent). The �rst constraint indicates that
the agent has be of type ANIMATE, and the second indicates that the sentence has to be in passive
mode. Essentially, the PALKA system uses constructs that are similar to AutoSlog.

A more general approach is provided by the CRYSTAL system [51]. CRYSTAL o�ers means
for specifying lexical, syntactical and semantical constraints for all parts of a sentence. Specif-
ically, constraints can be established for the subject of a sentence, e.g., a lexical constraint like
terms include: BUILDING, or for a prepositional phrase, e.g., a semantic constraint like classes
include: Person Name. In the above examples, CRYSTAL constrains the subject to include the
word `building' and forces the prepositional phrase to contain a person name.

In essence, the linguistic based approaches rely on some notion of patterns that specify lexical,
syntactical and semantic constraints for the information to be extracted. Of course, the more
semantic constraints are speci�ed, the more the prior modeling of the semantics of the application
domain becomes necessary. The accuracy of the semantics must also be veri�ed during the extrac-
tion process. This clearly indicates that there is an obvious tradeo� between a more precise result
of the extraction process and the complexity of the extraction process itself.

3. SOURCE PROPERTIES

As a �rst step in comprehending the E&T problem, it is important to understand the properties
of the information source. The source properties will have a strong inuence on the complexity
of the E&T problem as well as on the space of possible transformations that we can apply to the
information. The most signi�cant properties are presented in form of a taxonomy in Figure 1 and
are discussed below.



A Survey of Semi-Automatic Extraction and Transformation 5

structure

topology

correctness

regularity

stability

source

interaction

error free
format errors

content errors

free

tagged

schema provided

syntax
semantics

availability

single document
multiple documents

irregular
regular

source changes content
source changes structure
source changes infrequently

change discovery

simple change notification

change notification with delta

multiple sites
single site

Fig. 1: Taxonomy of source properties relevant to E&T

3.1. Structure

The structure of the source is an important factor in deciding how to generate extraction
descriptions. Structure here refers to syntactic marks and formatting that organize the content of
a document. Sources can vary from being completely unstructured, i.e., free text, to having some
implicit structure, e.g., section numbers in a text document, to being fully structured, such as a
relational database.

Today, many sources structure their data by using tags. For example, most web documents
are marked up with HTML, which explicitly provides the document structure in a syntactical
way. Other tagged documents are SGML and XML documents, where the tagging conveys some
semantical information about the source data and leaves the syntactical aspects to the associated
style �les.

In other instances, the sources may provide meta-information about the document such as a
schema. For example, an XML source might provide the schema in form of a document type
de�nition (DTD). In addition, ontologies may be used to o�er semantic meta-information about a
source document [26, 12, 15]. The inuence of the source structure on the extraction process will be
discussed in detail in Section 4.4. When the document provides little structural information that
can be used during extraction, the following properties still a�ect the automation of the extraction
process.

3.2. Topology

The topology of a source refers to the di�erent documents at a source and the relationships
between each other. In order to fully understand the implication of topology on the extraction
description generation, it is necessary to clearly de�ne what a document is. The di�culties associ-
ated with de�ning a document can be illustrated with the case of web sites. A web document, from
a purely syntactical standpoint, is a single HTML �le, together with its embedded, uninterpreted
components (GIF, JPEG, applet.) However, multiple HTML pages often form a semantic unit
through links between each other. Many applications, such as latex2html and javadoc, convert a



6 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

single original document into a set of web pages. Many handcrafted web sites likewise are seman-
tically a unit, despite consisting of many pages. Therefore, a web document may consist of many
HTML pages, even spanning multiple sites In contrast, a full text document, such as a book, forms
a single physical document. However, for extraction purposes, there are applications where it is
reasonable to consider the physical document as a sequence of documents, each of which describes
a chapter.

The notion of document has no single mathematical de�nition. In general, recognizing larger
structures as single entities must proceed from a semantic basis. Therefore, the actual de�nition
of a document must be provided by the end user of the data. In fact, semi-automatic extrac-
tion techniques, discussed in Section 4.1.2, typically depend on manual speci�cation of document
boundaries. In addition, Section 4.5.2 discusses aspects of de�ning document structure based on
the target document semantics.

Let us turn our attention from the topology of a single document to the topology of a set of
documents. When documents are interconnected, as in the example of chapters of a book, their
interrelationships are valuable and the extraction process must recognize and preserve them.

3.3. Correctness

A major issue when trying to automate the generation of extraction descriptions is the antic-
ipated correctness of the source data. Errors can range from simple misspellings, omissions and
superuous additions, structural errors, to completely erroneously speci�ed documents. Later, in
Section 4.3, we will present a taxonomy of techniques to deal with the correctness of source data.

The source can be considered error free or having format, content, or availability errors (or
combinations of them). Format errors happen when the page does not conform to the expected
format (e.g., an XML page that do not conform to its DTD). As another example of format error,
consider the case of a bibliography entry that does not conform to the expected Springer citation
rules but instead follows the ACM Press rules. Content errors happen when the page does not
contain the information that we were expecting. For example, an XML page that we expect to
contain prices of items, but instead contains quantities in inventory. A di�erent category of errors
derives from source availability. For example, the source may be stored remotely and the extraction
engine has to transfer the data locally. Assuming that the transmission layer is handling erroneous
transmissions, the main problem is the possibility of a temporal unavailability of the source, due
to a problem with the source server or due to network partitioning. Section 4.3 discusses error
handling related to sources. Of course, the source may provide a guarantee that it is free of errors
or at least free of certain kinds of errors. In this case, the extraction process can be much simpler
than if the source does not make any guarantees.

3.4. Regularity

Instances of source documents may be regular in their format or vary widely. The latter case
usually occurs when the document instances are hand-coded or generated over time. Irregular
documents are not a priori incorrect but pose similar problems to the extraction process. The
contents of document instances may have developed over time and may contain components that
were not previously allowed or are not allowed anymore. Change over time introduces irregularities
to the source that have to be taken into account by the extraction description generation.

For example, the document instance being analyzed may contain component variations not
encountered before and therefore not included in the extraction description. In practice, lack of
data regularity is a problem so frequently encountered that it should be considered and treated as
unavoidable. Section 4.2 covers the computing power of the extraction process, and its impact on
handling source irregularity.

3.5. Stability

Besides the evolutionary change of the document instances, which leads to source irregularities,
sources can also change more abruptly by changing their format or content at once. While it is



A Survey of Semi-Automatic Extraction and Transformation 7

unusual that a source changes its topic or domain, it may well often change its domain speci�c
content. For example, a news service replaces old news articles with new ones. Likewise, stock
quoting services constantly update pages based on current market prices.

Especially in commercial information sources, changes to the format can happen frequently due
to corporate identity changes, advances in technology (i.e., the introduction of JavaScript or XML),
or \simple" presentation design changes. Unlike the case of irregularities introduced over time,
these changes normally a�ect all document instances at once. Therefore, the extraction process
does not need to keep track of the old versions but still needs to be able to detect the changes and
regenerate the new extraction descriptions.

3.6. Interaction

Some sources are able to provide noti�cations whenever its data changes. This noti�cation
can be useful for the extraction process, as frequent changes will invalidate an existing extraction
description. Sometimes the noti�cation includes what is changing, the delta, but more often the
change noti�cation only informs of a change and does not provide the delta. In the latter case,
the extraction process needs to discover the changes itself, in order to bring itself up to date.
Otherwise, if the change noti�cation provides the change delta, this information can be utilized
directly to regenerate the new extraction description. If no change noti�cation is provided by
the source, the extraction process may or may not be able to detect the change and in the worst
case may return invalid data. See the discussion of change handling by the extraction process in
Section 4.3 below.

4. EXTRACTION PROPERTIES

In this section, we explore the di�erent properties of the extraction process. Although the
extraction process is partially determined by the properties of the target source, there is still some
exibility in establishing the extraction process. For example, when a source contains an error (a
source property), the extraction can choose to fail, can attempt to recognize the error and generate
a warning, or can modify the E&T rules to account for the error. In Figure 2, we give an overview
of the properties that we will study in this section.

4.1. Automation

An important property of the extraction process is its level of automation. An extraction
process can be ad-hoc, based on rules speci�ed manually with or without tool assistance, or even
automatic.

When a programmer is �rst confronted with the need of solving an E&T problem, the common
reaction is to write some ad-hoc code to solve the problem. This solution is acceptable when
there are a small number of stable sources. However, as the number of sources grows (or they
become less stable), the programmer �nds himself writing very similar (although not equivalent)
pieces of code to perform the extraction. Manual approaches are based on the idea of capturing
this similarity in extraction rules. Speci�cally, this is achieved by providing the programmer with
libraries and tools such as W4F [48] that generate most of the extraction code based on extraction
rules de�ned by the programmer. Unfortunately, writing extraction rules is labor intensive and
error prone. For example, when refactoring the structure of an on-line version of the Oxford English
Dictionary (OED) [44], it was found that fully 7% of the dictionary's original on-line de�nitions
were erroneous and contained only punctuation or single words like `hence' and `also'. The next
level of automation, o�ered by semi-automatic extraction systems, is to enhance the process of
generating extraction rules. This automation is typically achieved with a learning-based system,
where the programmer directs the process until it achieves the required quality. Semi-automatic
systems frequently o�er the best tradeo� between quality of translation and resources used. Finally,
automatic systems attempt to replace completely the role of the programmer with an Arti�cial
Intelligence system.



8 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

extraction engine

use of source knowledge

use of target knowledge

transformation capabilities structural transformations
no transformations

semantic transformations

extraction

automation

programming by hand

programming by demonstration

learning approach

manual

handcoded training set
training set by demonstration

supervised learning

unsupervised learning

single seed

seed structure

context-free grammar

finite state automaton

query engine

procedural

syntax

formatting characters

source schema

source description language

syntax

text

learned schema

given schema

output description language

semantics
structural semantics

content semantics (ontologies)

semantics
structural semantics

content semantics (ontologies)

change and error handling
detect and warn
fail

detect and compensate
detect and learn

semi

automatic

Fig. 2: Taxonomy of extraction properties relevant to E&T

In the following subsections, we will further discuss the manual and semi-automatic approaches
to the generation of extraction rules.

4.1.1. Manual Extraction

We de�ne a manual approach to the E&T problem as one where users are required to describe
the extraction process by writing rules in some high level language. Speci�cally, when using a man-
ual approach, the problem is solved by having an expert user understand the syntax and semantics
of the source and write the procedure to translate the source into the target data structure.

A designer of a system based on a manual speci�cation of rules is confronted with two, some-
times conicting, objectives. First, the system has to be powerful enough to handle the extraction
process. This is, given a source and a target structure, we should be able to instruct the system to
extract the information from the source and arrange it in the style of the target structure. Second,
the system should also allow for easy speci�cation of the extraction rules. In other words, the
system should be easy enough, so it is worth using it instead of writing an extraction program in



A Survey of Semi-Automatic Extraction and Transformation 9

a traditional programming language.
We now present two examples from current research. The �rst example, Proxygen [25], focused

in the �rst objective, ease of use, while the second example, Editor [4], focused on obtaining a
language that is computationally complete. Both systems require an expert user to write extraction
rules in a template or script.

Proxygen provides the user with a toolkit that contains many constructs, specially for HTML
processing, that makes writing an extractor easier that when using a programming language or a
tool like LEX or YACC. The user speci�es the processing in a procedural way, with statements that
are processed sequentially. Statements have three components: a source variable, which contains
a list of strings; an operation, which can be a generalized regular expression or a library function
call; and, a target variable. The execution of a statement is simply applying the operation to the
source variable and placing the result into the target variable. When the operation is a regular
expression, the user can specify a pattern to �nd as well as what to extract from that pattern. For
example, if the operation is the regular expression *author: #., and the source variable is the list
["paper author: XXX.", "paper author: YYY"], the target variable will be assigned the value
["XXX","YYY"]. In the pattern, the `*' means any sequence of zero or more characters; the `#'
saves the resulting pattern. Proxygen also provides error-handling operations. Each statement
can have a case instruction, allowing the system to try di�erent regular expressions (or functions)
until it �nds one that matches (or returns failure).

The system in [4], Editor, takes a di�erent approach. Instead of providing a large number of
constructs like in Proxygen, it only has four source operations: search, loop search, cut, and copy.
The search and loop search instructions are used to select regions of interest, while the cut and copy
instructions are used to restructure those regions. Editor has been proved to be computationally
complete, in the sense that any computable document restructuring can be expressed in it. For
example, in Figure 3 the author list on the left is transformed into the table on the right by the
script in the center.

paper

author: XXX

paper

author: YYY

loop search(source, "paper author: *")

copy(source)

paste(destination)

end loop.

XXX

YYY

Fig. 3: Author List, Script and Output Table

The primary advantage of a system based on a manual generation of rules is that the extractors
it derives are typically very e�cient and fast. These characteristics allow this kind of extractor
to process large volumes of data. Additionally, the complete control over the extraction process
allows the programmer to handle complicated semantics that might be very hard to de�ne by using
a semi-automatic or automatic system.

The drawback of the manual approach is that the extraction mechanism depends on human
expertise for describing the structure of the source documents. Hand-coding the pattern matching
rules can become a complex, labor intensive, time consuming and error prone task. This drawback
can be diminished by adding error handling capabilities to the extractor, which allows it to survive
transient errors in the source and to exit gracefully when the source has changed. In addition,
providing a GUI front end can make writing the extraction speci�cation easier. As the user
interface becomes more sophisticated, the extraction process starts to become a semi-automatic
task, rather than a manual one. In the next section, we will explore semi-automatic approaches to
the extraction problem.

4.1.2. Semi-Automatic Extraction

To reduce the labor intensiveness and the time consumption of the manual generation of extrac-
tion rules, the E&T process can be assisted by tools that at least partially automate the extraction.
In order for the automation to yield extraction descriptions that are close in quality to hand-coded



10 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

descriptions, the generation process needs to provide for some kind of quality control, as in the
form of expert feedback.

A basic learning-based algorithm is divided in three phases: a training phase, a processing
phase, and a feedback phase. In the training phase, the algorithm assimilates a set of correct
samples of extraction solutions. In the processing phase, the algorithm applies the patterns from
the training samples to new inputs. Finally, in the feedback phase, the user provides some mea-
sure for the quality of the extraction process. This feedback allows the algorithm to improve its
\learned" behavior. Under continued use in the E&T process, the processing and feedback phases
are repeated. We consider that learning-based approaches achieve a good balance between quality
of extraction and ease of use.

Several characteristics de�ne the training phase. One characteristic is whether the training
phase is incremental or whether it proceeds in a batch mode. That is, either the set of training
examples may grow over time, or they must all be speci�ed in advance. A second characteristic
concerns the language bias, i.e., what kind of representational formalism is used for describing the
training instances and the learned hypotheses. Finally, a third characteristic is the search bias,
which speci�es whether the learning algorithm is performing a top-down or a bottom-up search,
i.e., whether it starts from the most general hypothesis and specializes it or whether it takes the
speci�c training examples as a starting point and generalizes them.

SoftMealy [27] pursues a bottom-up learning approach and assumes that all training examples
are available from the very beginning. SoftMealy uses �nite-state transducers to represent the
learned wrapper. The STALKER wrapper induction algorithm [41] may be characterized as a
top-down learning approach that re�nes landmark automata as long as there exist some uncovered
positive training examples. Again, STALKER assumes that all training examples are given in
advance.

In the extraction process, positive training examples can be either a complete source document
or a source fragment characterizing elements that should be extracted. In the same way, negative
examples could describe either a complete source or a source fragment that should not be covered
by the generated extraction description.

A di�erent learning strategy starts with a small seed and then automatically tries to discover
new rules that can be used to extract data. It is obvious that it is hard to make any guarantees
about the quality of the generated extraction descriptions due to the unsupervised progress and
addition of rules.

4.2. Extraction Engine

Now we turn our attention to the engine that processes the extraction rules. The simplest E&T
engines are based on �nite state automata where the transitions describe the extraction process.
An example for this kind of transformation engine is the Proxygen extractor [25]. In Proxygen,
each transition de�nes an extraction using regular expressions and each state represents both the
incoming and outgoing data on which the regular expressions operate. The advantages of �nite state
automata are their simplicity and ease of use. The transformation speci�cation (i.e., the speci�c
extraction automaton) can easily be changed and adapted to new states and extraction rules.
Therefore, an automata-based engine is well suited for being used in semi-automatic extraction.
However, a major disadvantage of the �nite state automaton however is the limited expressive
power, since it can only describe regular languages, i.e., it cannot express more than primitive
recursion. This means for example, that it can only handle nested structures where the nesting
depth is known in advance. Additionally, the number of transitions may be extremely high if the
source changes often.

Transformation engines based on context free grammars can employ recursion to express ex-
traction rules that can handle arbitrarily nested structure. Speci�cally, the grammar rules can
be used to describe the expected input format while the annotations transform the parsed input
and generate the extraction result. This category contains simple YACC based transformation
engines that cannot deal well with changing or erroneous data sources, or engines based on fault
tolerant parsers such as the one used by JEDI [28]. JEDI's parser, for example, can cope with



A Survey of Semi-Automatic Extraction and Transformation 11

incomplete and ambiguous source speci�cations by choosing the most speci�c rule among several
applicable rules. When �nding no applicable rule, it skips as little as necessary of the source data,
until it �nds an applicable rule. While creating context free grammars is, in general, more com-
plex than generating �nite state automata, these extraction descriptions are still well suited for
semi-automatic generation.

The main advantage of pattern based �nite state automata is that they can easily describe
only the parts that are interesting for the extraction process and disregard everything else. On
the other hand, standard parsing based grammars normally need to give an exact description of
the document and are therefore less exible. However, less brittle approaches such as the one
employed by JEDI, make the grammar-based approaches more appealing. In addition, context
free grammars have a higher expressive power than �nite state automata.

Increasingly, the source data is already represented in a form that can be interpreted as a data
model such as OEM [46], XML [58] or ASN.1 [33]. In this case, the transformation engines can
be query engines supporting query languages such as Lorel [2] or XSLT [59] that can be used
to describe the E&T process. The expressive power of these engines depends on the expressive
power of the query languages. These query languages still need to be able to cope with the source
properties from Section 3. Again, the generation of these views lends itself well to semi-automatic
generation.

Finally, the most exible, expressive category of extraction engines is based on procedural
descriptions that, in the general case, are able to express context sensitive rules. However, writing
these procedures is normally a very time consuming task where every single detail needs to be
written out. Unless the procedural language is not limited, such as Editor [4], the semi-automatic
generation is di�cult and the resulting procedures require signi�cant maintenance.

4.3. Change and Error Handling

Constant changes and the presence of errors are common characteristics of unstructured data.
A good extraction system must be able to deal with errors in an e�ective way. This is particularly
important in some applications (e.g., data cleansing) where the errors, rather than the data, are
the focus of the extraction process. It is clear that a semi-automatic generation of the extraction
description cannot predict all possible errors. However, the extraction mechanism can provide a
spectrum of solutions, ranging from fault tolerance in the presence of errors to automatic modi�-
cation of rules when abnormal data is found. We will �rst distinguish between errors and changes,
and then we will outline the di�erent alternatives for dealing with them during the E&T process.

We de�ne an error to be an isolated abnormality of the data, which could be either spatial or
temporal. A spatially isolated abnormality is a localized one that happens only in a handful of
documents of the source (e.g., a typo in the document). A temporally isolated abnormality is a
transient one that happens only for a short period of time (e.g., a document that is temporarily
unavailable).

A change, on the other hand, is de�ned as a recurring abnormality of the data that has appeared
since the extraction rules were originally written. For example, the contents of document instances
may have developed over time and may now contain components that earlier were not allowed or
that are not allowed anymore. This introduces an irregularity to the source that has to be taken
into account by the extraction process. We call this irregularity a delta or a change.

Error detection and change handling mechanisms can be grouped in four major categories: (i)
fail, (ii) detect and warn, (iii) detect and compensate, and (iv) detect and learn. Detected but
ignored errors are not considered, because they are indistinguishable from undetected errors.

A fail strategy simply aborts the extraction process when abnormal data is found. This is the
simplest approach to the problem and it is unacceptable in most situations.

A detect and warn strategy is able to �nd the abnormal data and can warn the user of its
presence. Then, the user needs to correct the abnormal data, and restart the process again.

A detect and compensate strategy, not only �nds the abnormal data, but also tries to compensate
for its presence. The simplest compensation is just to disregard the erroneous data and continue
with the extraction process. More sophisticated compensations include: applying a di�erent rule, or



12 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

retrying the original rule several times until it succeeds (in case of a transient error). An additional
way of compensation, that is extremely useful for change handling, is the use of di�erent \versions"
of the extraction rules. More speci�cally, when the extraction mechanism considers a document,
it �rst detects to which version it belongs and then applies the correct version of the extraction
rules.

A detect and learn strategy, not only compensates in the current extraction process, but it tries
to regenerate the extraction description based on the newly discovered anomaly. This learning
process may be done with the help of a specialist.

4.4. Use of Source Knowledge

The more structured the source is, the easier it is to automate the generation process by
exploiting the syntactical and semantical information encoded by the structure. For example,
wrappers for web based information sources are typical applications where at least some form of
structure is available in form of syntactical tags (HTML) or tags with user de�ned structure and
implied semantics (XML).

On the other hand, there are many applications where the goal is to generate more structured
documents from sources that provide almost no structure. For example, one might want to mark
free text documents with SGML tags for further processing in a text database [28].

In many extractions, it simpli�es the rule set to utilize knowledge external to the source doc-
uments and meta knowledge about the documents themselves and the document contents. For
example, a thesaurus could be used to specify generalization and specialization behavior in order
to make it easier to deal with semantic granularity di�erences in the input structures.

4.4.1. Syntax

The simplest formatting to exploit in source documents are white space, carriage returns,
null and EOF characters. Countless source documents also use punctuation and capitalization
or positional regularity as an implicit form of structuring. For example, programming languages
use special escapes for comments, and email and net news programs use special characters to cite
inserted text from other messages. All mark-up languages rely on escape characters to indicate
commands and their parameters. Extraction based on these characters relies on the fact that they
have a customary and uniform semantics [40, 3].

Source description languages and mark-up languages support the tagging of portions of docu-
ments for specialized processing. Most of these languages have a �xed set of commands, and are
targeted to a single application. A separate application such as a search engine [45] may empha-
size portions of the source information by capitalizing on the �xed interpretation of the embedded
tags. Supplementary information such as �le extensions provide context to con�rm the command
interpretations. However, SGML and more recently XML are extensible, and designed for use
in general application domains. Here separate documents may use the same tags with di�erent
intended meanings. In these cases, XML namespaces associate context to interpret tag names.
Although these description languages are convenient, they are ine�cient when source data is very
regular.

Database schemas, object class de�nitions, RDF schemas[56], and XML schemas (such as DTDs
or Microsoft's XDR [37]) provide speci�cations for document structures. Extraction based on
these speci�cations depends on the complete regularity of the source data. Any non-conforming
or erroneous data will not be properly accounted for in this extraction setting. However, XML
schemas allow open content and thus they are somewhat forgiving on certain kinds of irregularities
of open-content data.

4.4.2. Semantics

In the preceding paragraphs, we have seen how syntax based extraction on source documents
depends on being able to assign a single semantics to the structures of interest. The semantics can
be uniform by convention, by de�nition, or through standardization. In certain cases the semantic



A Survey of Semi-Automatic Extraction and Transformation 13

can be user de�ned. For example, DTDs express (to a certain degree) the explicit structure of a
XML document. It is possible to extract information across document syntax types, by respecting
their common semantics. For example, we may compile lists of document titles from HTML, email,
�le names, etc.

Beyond extraction based on the semantics of the document's structure, we may invoke the
semantics of the data contained in the documents. For example, the SKC project [29] extracts
a list of bodies of water by �nding names adjacent to the set of words Bay, Sea, Ocean, Gulf,
etc. This operation exploits the ontological properties of the source documents' contents. Such
operations are understood to be context dependent, and are not universally applicable across all
sources. Ontobroker [12] explicitly attaches ontological facts to source documents to guide which
semantic operations are acceptable over them.

4.5. Use of Target Knowledge

The target output of the extraction process often determines the approach we use in interpreting
the source data. In particular, we can limit the scope and complexity of the extraction, by focusing
on the target result. Obtaining a list of country capitals from an on-line atlas, for instance, does
not require any information about the countries' natural resources. Similarly, when the target
output is plain text, we may disregard all formatting tags in a source.

General knowledge bases can support semantic mappings between input and output documents
and reduce the number of alternative analysis paths to be considered. Examples are medical
classi�cations like MED or MEDLINE [55] that simplify the task of extracting and completing
drug description information for pharmaceutical data bases. Meta-information, such as the Dublin
Core [11], reduces the e�ort required for developing the rule sets by reducing both the number and
complexity of the E&T rules.

4.5.1. Syntax

When the target format is plain text, typical transformations remove tagging and explicit struc-
tures. Flattening a structured source to a textual format is the simplest use of target requirements
in an extraction. When passing a document to a spell checker the attening operation is very
bene�cial. It is often convenient to add white space and carriage returns to documents to simplify
their further processing.

The translation of tags and implicit structure in documents to an output description language
is common. XML is becoming a popular output format for semistructured data of all types. Since
XML is a serial encoding, we may consider serializing source documents before considering further
extraction. In addition, we must de�ne the granularity of the encoding we will use to transform
the source data.

Given a schema de�ning the target data, we may project out unimportant parts of a source
schema during extraction. We also remove tags in the source documents that are de�ned by the
target schema. If we are learning a target schema, we must drop irregular portions of the source
documents. Likewise, we lose data for which there are not enough training samples to generate a
schema.

An example of a transformation language based on syntax is XSL (Extensible Stylesheet Lan-
guage) [59]. XSL consists of two parts: a language for transforming XML documents, and an
XML vocabulary for specifying formatting semantics. Basically, An XSL stylesheet speci�es the
presentation of a class of XML documents by describing how an instance of the class is transformed
into an XML document that uses the formatting vocabulary.

4.5.2. Semantics

With a de�ned semantics for the target information, it is possible to further limit how much of
the source data is examined. For instance, in the case of textual output we may drop all portions
of sources that are non-textual. When extracting structurally regular portions of a source into
a database, it is simplest to �lter the input using regular expressions. It is common to prune



14 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

multi-�le source documents based on the desired target structure. For example, the extraction of
data on Mediterranean �sheries will be made more e�cient by excluding source �les relating to
the Paci�c and Indian Oceans.

An output ontology is a powerful tool to guide the extraction process. Ontologies provide
support for determining validity of source data, for example. In addition, the output ontology
can drive the �ltering of source documents during the course of extraction. In the example of
extracting country capitals, the output ontology allows us to �lter all portions of the on-line atlas,
aside from the political data [29].

4.6. Transformation Capabilities

Unless the extraction just copies the input data to the output as is, any extraction performs
some kind of transformation. There exists a whole range of transformations that either could be
part of the extraction process or could be handled after the extraction phase in a special transfor-
mation phase, for example, by view de�nitions over the extracted data. The best distribution of
the transformations between these two phases has to be carefully decided based on criteria such
as the data models and extraction engines involved in the process. In the case of semi-automatic
extraction, transformations that can e�ciently be handled automatically are best left to the later
transformation phase.

In case we deal with documents where the input and output structure description languages
are the same, such as Springer citation rules or SGML documents, we can make all implicit
structures explicit by full SGML tagging or add missing components with either default or null
values. This process re�nes the existing structure by adding new tags where the page content allows
it. Necessary mechanisms here may well go beyond learning and may involve design decisions by
humans. These design decisions should be moved to the later transformation phase, in order to
keep the extraction process semi-automatic.

In addition, we can eliminate unwanted structural components by applying �lters to the input
documents. The �lters focus the extraction process on application speci�c information. In this
case, the rule speci�cation process can be considerably automated by using a rule set to develop a
structural description of the input and output documents. For instance, the process can generate
a schema for XML documents that then can be used to generate the E&T speci�cation.

If the structural description languages of the input and the output are di�erent, the extraction
rules will not only have to make implicit structures explicit, but will have to translate them into well
formed structures of the output language. For example, the input format may be ICD-10y, while
the output format is SGML. The use of the embedded semantics of these languages is important
and usually su�cient for these translations.

Sometimes the structure of the document instances has to be changed regardless of the input
and output description languages, as when moving a subcomponent name in the structure address
to the same level as address. In such cases, the semantics of the structural components themselves,
{in our example above, the structures that are accepted as addresses{ will have to be understood
and utilized for the construction of the extraction description. Again, problem factorization and
the variants discussed above will inuence the complexity and power of the rule sets required.

Finally, the structural description of the output documents may not only require the semantics
of the implicit structures of the input, but also an understanding of the contents of the input
documents. For example, we must be able to extract the construction date but not the restoration
date from building descriptions in tour guide documents. In this case, methods developed in
computer linguistics may have to be used to extract such embedded information and place it into
explicit structures of the output documents. Such language understanding issues are beyond the
scope of our analysis.

yTenth Revision of the International Statistical Classi�cation of Diseases and Related Health Problems by the
WHO



A Survey of Semi-Automatic Extraction and Transformation 15

5. INTERESTING NEW DIRECTIONS

A number of promising directions for future work arise from the classi�cation and analysis of
the various approaches in the previous sections.

5.1. Training Examples

The training examples that are provided as input to the learning process characterize the subset
of relevant information elements that should be extracted from an information source. All of the
approaches discussed rely only on the speci�cation of positive training examples. For example,
NoDose [3] uses training examples to \learn" the proper way of decomposing a web page. First,
the user shows a sample decomposition of a web page to NoDose. The program attempts to learn
from that example and shows the result in a di�erent web page. The user can then correct the
program, which learns from the changes, and attempts to decompose another page. The process
continues until all pages of the collection have been decomposed.

Negative examples are not considered at all in wrapper generation [27] or they are implicitly
assumed by applying the closed-world assumption as in the STALKER system [41]. It is obvious
that the explicit speci�cation of carefully chosen negative examples could be exploited for guiding
the learning process as well. Thus, the problem of over generalization could be reduced to some
extent. Of course, one would need an appropriate user interface for specifying the negative training
examples. Such an interface could be easily provided by generalizing the cut-and-paste interfaces
that are available for specifying the positive training examples. The \demonstration-oriented user
interface" of the Ariadne system [32] could be extended in a straightforward way for handling
negative training examples as well.

In addition none of the techniques examined o�er guidelines for choosing informative training
examples, either positive or negative ones. It is up to the user to select most promising training
instances. This situation is speci�c to the wrapper generation �eld since in other machine learning
applications, the training examples are given from the very beginning and thus that problem does
not arise. However, there exist active learning methods [10] for proposing additional informative
training instances. The WHISK system [50] suggests three di�erent types of new training instances:
instances to increase the precision of rules, instances that can be covered by a slight generalization
of an existing rule, and instances not yet covered by any rule. Further research is necessary to
come up with good heuristics for proposing additional training instances.

5.2. Incremental Learning

A more interactive learning framework provides means for improving the learning process in
various ways. For example, a tool based on an incremental learning algorithm could improve its
extraction rules by using feedback from the user. This feedback does not necessarily have to be
of positive nature. In fact, in case the wrapper extracts information items which do not meet the
requirements of the user, these false positives items, could be o�ered as negative training examples.
Thus, a stepwise re�nement of the generated rules could be achieved.

An incremental learning approach helps to cope with evolving information sources that change
their structure over time. By using an incremental learning approach, one could avoid to learn the
wrapper rules always from scratch. Instead training instances from updated sources could be used
as additional training instances for adapting the formerly learned rule set to its new environment,
i.e., the updated sources.

5.3. Syntactic and Semantic Knowledge

Wrapper generation systems rely only on patterns or rules that exploit delimiters found in the
source text, in contrast to approaches in the area of arti�cial intelligence such as in [7]. Wrapper
generation systems make use of HTML tags and source text words which are domain speci�c, like
`high' or `low' in weather forecast sources. Neither syntactical structures nor semantic constraints
are needed to de�ne the extraction patterns or rules. This is possible because these information



16 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

sources exhibit typically a very simple and regular syntactical structure. This simplicity contrasts
with the task of applications that extract information from free texts in the management succession
domain [54].

Nevertheless, the usage of simple syntactical information, e.g., the usage of syntactic categories,
could reduce the number of alternatives that have to be considered during the rule generation
process. Furthermore, the usage of some kind of semantic knowledge, as typically found in a
thesaurus or a system like WordNet [38] might improve the learning process in case the wrapper
has to deal with irregular source structures or with varying terminology.

When analyzing sources like apartment rental ads one can easily see that a wide variety of
words are used to describe the same real world object. Rental ads use terms like `bdrm', `brs' or
`bedrooms' to refer to the number of bedrooms of an o�ered house. Thus, a wrapper has to be
able to handle homonyms, based on semantic relations as o�ered by WordNet. Job o�erings often
use terms on di�erent levels of abstraction to refer to the same kind of job. If someone asks for a
`System Engineer' job, the person should get hold of job o�erings for `Software Engineer' or `System
Specialist'. In order to be able to deal with such situations, a wrapper generation system would
need an ontology specifying semantic relationships like generalization between di�erent job types.
By using syntactic and semantic knowledge, wrapper generation systems become more similar
to information extraction techniques. However, one has to be careful in adding this additional
knowledge since wrappers might easily become too complex and thus too ine�cient. Nevertheless,
it is worthwhile to investigate some of these approaches, like SRV [17] or WHISK [50]. A nice
overview of these kinds of systems can be found in Muslea [40].

5.4. Link Structures between Web Pages

A severe limitation of the discussed approaches is their restriction to the handling of a single
web page. Many information sources are organized in a way that additional information is found
by following links to further web pages. For example, when analyzing the source of World Gov-

ernment [23] important information about the structure of the government as well as its members
may only be found by accessing a sequence of linked web pages.

Obviously, taking into account links to other web pages makes the learning process much more
complicated since one has to learn in addition which links are relevant to follow and which are
not. A combination of di�erent features seems to be promising for evaluating the relevance of a
link: (i) Some kind of typing can be used to classify links into di�erent classes. Then, based on
their class membership links may be determined as relevant or not relevant. (ii) An analysis of the
structure of the target page might provide useful information to check the relevance of a link. (iii)
The context in which a link is de�ned might also provide valuable information about its relevance.
Of course, all these features need careful analysis in order to determine which features are most
promising. An example of how to deal with this issues is in [36].

When considering future directions one also has to take into account the development of
XML [58] and associated XML schemas (such as DTDs). The generation of XML wrappers clearly
eliminates many low-level syntactical problems that currently have to be addressed. The problem
of how to map a given source to a target schema structure in a semantically consistent way will
nevertheless remain relevant, since XML does not provide that kind of semantic information. The
development of the Resource Description Framework (RDF), see [57, 56], will have to be considered
in that context, since that initiative aims at providing means for describing semantic meta data
about a given web resource. In general, the development of XML and associated standards may
shift the generation of a wrapper from a rather low-level syntactical problem to a more semantic
problem.

6. CONCLUSION

In recent years, a number of approaches have been developed for extracting and transform-
ing information from online sources. In this paper we introduced a two dimensional taxonomy
for classifying the extraction and transformation task. The taxonomy's �rst dimension classi�es



A Survey of Semi-Automatic Extraction and Transformation 17

information sources with respect to their structure, their correctness and their regularity. The
taxonomy's second dimension classi�es extraction methods according to features like automation,
use of source and target knowledge, and transformation capabilities.

A widespread use of XML and related Document Type De�nitions may solve some of the low
level syntactic problems currently found when extracting information from heterogeneous sources.
Nevertheless, XML tagging remains on a syntactic level, and lacks a clear semantic de�nition
of the used tags. Because of XML's lack of semantic focus, further research is required on the
relationship between DTDs, schemas, and namespaces on one side and ontologies on the other
side. This relationship is important because ontologies may be used for providing a well-de�ned
semantics for the XML tags. First steps are described in [15].

Another promising line of research is represented by approaches combining the shallow lin-
guistic analysis of texts [42] with the exploitation of tags and some knowledge about the domain
at hand. Such approaches avoid the e�ciency problem involved in deeper text understanding,
but nevertheless capture more of the semantics of the available sources than pure tagging-based
approaches.

In the future, more and more sources will be multimedia sources that bring up new problems
with respect to information extraction. Methods for extracting information from such multimedia
information sources are still an open and interesting research problem. Information brokering [49]
presents a �rst approach to these problems.

REFERENCES

[1] Serge Abiteboul. Querying semistructured data. In Proceedings of the ICDT, pp. 1{18 (1997).

[2] Serge Abiteboul, Dallan Quass, Jason McHugh, JenniferWidom, and Janet Wiener. The Lorel Query Language
for Semistructured Data. Journal of Digital Libraries, 1(1) (1996).

[3] B. Adelberg. NoDoSE { a tool for semi-automatically extracting structured and semistructured data from
text documents. Technical report, Computer Science Department, Northwestern University, Evanston, IL,
http://www.cs.nwu.edu/~adelberg/nodose/nodose.html (1998).

[4] Paolo Atzeni and Giansalvatore Mecca. Cut and paste. In Proceedings of the 17th ACM
SIGACT/SIGMOD/SIGART Symposium on Principles of Database Systems, pp. 144{153 (1997).

[5] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative analysis of methodologies for
database schema integration. Computing Surveys, 18(4):323{364 (1986).

[6] Joachim Biskup and Bernhard Convent. A formal view integration method. In ACM SIGMOD Proceedings,
pp. 398{407 (1986).

[7] C. Cardie. Empirical methods in information extraction. AI Journal, 18(4):65{79 (1997).

[8] Mal Castellanos, Felix Saltor, and Manuel Garcia-Solaco. Semantically enriching relational databases into
an object oriented semantic model. In Proceedings of the International Conference on Database and Expert
Systems Applications (DEXA), pp. 125{134 (1994).

[9] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using a large knowledge base in
Carnot. IEEE Computer, 24(12):55{62 (1991).

[10] I. Dagan and S. Engelson. Sample selection in natural language understanding. In Connectionist, Statistical
and Symbolic Approaches to Learning for Natural Language Processing. Springer (1996).

[11] Dublin Core Metadata. http://purl.oclc.org/metadata/dublin core/.

[12] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based access to distributed and semi-
structured information. In Semantic Issues in Multimedia Systems. Kluwer Academic, Boston, MA (1999).

[13] Bertin Klein Dream and Peter Fankhauser. Error tolerant document structure analysis. International Journal
on Digital Libraries, 1(4):344{357 (1997).

[14] Daniel Dreilinger and Adele E. Howe. Experiences with selecting search engines using metasearch. ACM
Transactions on Information Systems, 15(3):195{222 (1997).

[15] M. Erdmann and R. Studer. Ontologies as conceptual models for XML documents. In 12th Workshop on
Knowledge Acquisition, Modeling and Management (KAW'99), Ban�, Canada (1999).

[16] E. A. Fox. Development of the coder system: A testbed for arti�cial intelligence methods in information
retrieval. Information Processing & Management, 23(4):341{366 (1987).

[17] D. Freitag. Information extraction from html: Application of a general machine learning approach. In Pro-
ceedings of the Fifteenth National Conference on Arti�cial Intelligence (AAAI), Madison, WI (1998).

[18] N. Fuhr. Probabilistic datalog - a logic for powerful retrieval methods. In Research and Development in
Information Retrieval, pp. 282{290 (1995).



18 A. Crespo, J. Jannink, E. Neuhold, M. Rys and R. Studer

[19] J. Geller, Y. Perl, and E. J. Neuhold. Structural schema integration with full and partial correspondence using
the dual model. Information Systems, 17(6):443{464 (1992).

[20] Janusz R. Getta. Translation of extended entity-relationship database model into object-oriented database
model. In DS-5, pp. 87{100 (1992).

[21] Charles F. Goldfarb. The SGML Handbook. Oxford University Press (1990).

[22] Charles F. Goldfarb and Paul Prescod. The XML Handbook. Prentice Hall Computer Books (1998).

[23] The governments of the world. At
http://www.louisville.edu/library/ekstrom/govpubs/international/intgov.html.

[24] U. Hahn and K. Schnattinger. Towards text knowledge engineering. In Proceedings of the Fifteenth National
Conference on Arti�cial Intelligence (AAAI), Madison, WI (1998).

[25] Joachim Hammer, Hector Garcia-Molina, Junghoo Cho, Arturo Crespo, and Rohan Aranha. Extracting se-
mistructured information from the web. In Workshop on Management of Semistructured Data, pp. 18{25
(1997).

[26] J. Hein, J. Hendler, and S. Luke. Reading between the lines: Using SHOE to discover implicit knowledge
from the web. In AAAI'98 Workshop: AI and Information Integration, Madison, WI (1998).

[27] C.-N. Hsu. Initial results on wrapping semistructured web pages with �nite-state transducers and contextual
rules. In AAAI'98 Workshop: AI and Information Integration, Madison, WI (1998).

[28] Gerald Huck, Peter Fankhauser, Karl Aberer, and Erich J. Neuhold. JEDI: Extracting and Synthesizing
Information from the Web. In COOPIS 98 (1998).

[29] J. Jannink, V. Pichai, D. Verheijen, and G. Wiederhold. Encapsulation and composition of ontologies. In
AAAI'98 Workshop: AI and Information Integration, Madison, WI (1998).

[30] J.-T. Kim and D.I. Moldavan. Acquisition of linguistic patterns for knowledge-based information extraction.
IEEE Transactions on Knowledge and Data Engineering, 7(5):713{724 (1995).

[31] Wolfgang Klas, Peter Fankhauser, Peter Muth, Thomas Rakow, and Erich J. Neuhold. Database Integration us-
ing the Open Object-Oriented Database System VODAK, chapter 14: Object Oriented Multidatabase Systems:
A Solution for Advanced Applications. Prentice Hall, Englewood Cli�s, N.J. (1996).

[32] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Pragnesh Jay Modi, Ion Muslea, An-
drew G. Philpot, and Sheila Tejada. Modeling web sources for information integration. In Proceedings of the
Fifteenth National Conference on Arti�cial Intelligence (AAAI), Madison, WI (1998).

[33] John Larmouth. ASN.1 Complete. Open System Solutions (1999).

[34] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases. Computing
Surveys, 22(3):267{293 (1990).

[35] Victor M. Markowitz and Arie Shoshani. On the correctness of representing extended entity-relationship
structures in the relational model. In ACM SIGMOD Proceedings, pp. 430{439 (1989).

[36] Ka Fai Yau Michael Rys. Data extraction from dynamic web sites: Combining crawling and extraction. In 8th
International World Wide Web Conference (1999).

[37] Microsoft, University of Edinburgh. XML-Data reduced (1998).

[38] G. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39{41 (1995).

[39] R. J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. Schema equivalence in heterogeneous systems:
bridging theory and practice. Information Systems, 19(1):3{31 (1994).

[40] I. Muslea. Extraction patterns for information extraction tasks: a survey. In AAAI'99 Workshop Machine
Learning for Information Extraction. AAAI Press (1999).

[41] I. Muslea, S. Minton, and C. Knoblock. Learning wrappers for semi-structured, web-based information. In
AAAI'98 Workshop: AI and Information Integration, Madison, WI (1998).

[42] G. Neumann and S. Schmeier. Combining shallow text processing and machine learning in real world applica-
tions. In IJCAI-99 Workshop on Machine Learning for Information Filtering, Stockholm, Sweden (1999).

[43] Christophe Nicolle, Djamal Benslimane, and Kokou Ytongnon. Multi-datamodels translations in interoperable
information systems. In CAiSE, pp. 176{192 (1996).

[44] The Oxford English Dictionary. http://www.oed.com/.

[45] L. Page and S. Brin. The anatomy of a large-scale hypertextual web search engine.
http://google.stanford.edu/~backrub/google.html (1998).

[46] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange across heterogeneous
information sources. In Philip S. Yu and Arbee L. P. Chen, editors, Proceedings of the Eleventh International
Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pp. 251{260. IEEE Computer Society
(1995).

[47] E. Rilo�. Automatically constructing a dictionary for information extraction tasks. In 11th Annual Conf. on
Arti�cial Intelligence (AAAI'93) (1993).



A Survey of Semi-Automatic Extraction and Transformation 19

[48] A. Sahuguet and F. Azavant. Building light-weight wrappers for legacy web data sources using W4F. In
Proceedings of the 25th International Conference on Very Large Databases (VLDB) (1999).

[49] A. Sheth, V. Kashyap, and T. Lima. Semantic information brokering: How can an multi-agent approach help?
In Third International Workshop CIA-99 on Cooperative Information Agents, Uppsala, Sweden (1999).

[50] S. Soderland. Learning information extraction rules for semi-structured and free text. At
http://www.cs.washington.edu/homes/soderlan (1998).

[51] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. Inducing a conceptual dictionary. In 14th Int. Joint
Conf. on Arti�cial Intelligence (IJCAI'95) (1995).

[52] Stefano Spaccapietra and Christine Parent. View integration: A step forward in solving structural conicts.
TKDE, 6(2):258{274 (1994).

[53] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model independent assertions for integration of
heterogeneous schemas. VLDB Journal, 1(1):81{126 (1992).

[54] Beth Sundheim, editor. Proc. of the 6th Message Understanding Conference. Morgan Kaufmann Publishers
(1995).

[55] U.S. National Library of Medicine (NLM). Search MEDLINE: PubMed and Internet Grateful Med.
http://www.nlm.nih.gov/databases/freemedl.html.

[56] W3C Candidate Recommendation. Resource Description Framework (RDF) Schema Speci�cation 1.0 (2000).

[57] W3C Proposed Recommendation. Resource Description Framework (RDF) Model and Syntax Speci�cation
(1999).

[58] W3C Recommendation. Extensible Markup Language (XML) 1.0 (1998).

[59] W3C Working Draft. Extensible Stylesheet Language (XSL) Speci�cation (1999).

[60] Ling-Ling Yan and Tok Wang Ling. Translating relational schema with constraints into oodb schema. In
Interoperable Database Systems (DS-5) IFIP WG2.6 Database Semantics Conference, pp. 69{85 (1992).


