
Routing Indices For Peer-to-Peer Systems

Arturo Crespo, Hector Garcia-Molina
Stanford University

{crespo,hector}@db.Stanford.edu

Abstract

Finding information in a peer-to-peer system cur-
rently requires either a costly and vulnerable central in-
dex, or flooding the network with queries. In this pa-
per we introduce the concept of Routing Indices (RIs),
which allow nodes to forward queries to neighbors that
are more likely to have answers. If a node cannot an-
swer a query, it forwards the query to a subset of its
neighbors, based on its local RI, rather than by select-
ing neighbors at random or by flooding the network by
forwarding the query to all neighbors. We present three
RI schemes: the compound, the hop-count, and the ex-
ponential routing indices. We evaluate their perfor-
mance via simulations, and find that RIs can improve
performance by one or two orders of magnitude vs. a
flooding-based system, and by up to 100% vs. a ran-
dom forwarding system. We also discuss the tradeoffs
between the different RI schemes and highlight the ef-
fects of key design variables on system performance.

1 Introduction

Peer-to-peer systems (P2P) have grown dramati-
cally in recent years. In a P2P system, distributed
computing nodes of equal roles or capabilities exchange
information directly with each other. These systems
represent an incredible wealth of information allowing
users to exchange documents (Freenet [7]), music files
(Napster [17], Gnutella [8]), and even computer cycles
(Seti-at-home [20]). A key part of a P2P system is doc-
ument discovery. Our goal is to help users find doc-
uments with content of interest across potential P2P
sources efficiently.

There are many mechanisms for searching in a P2P
system, each with their own advantages and disad-
vantages. These solutions can be classified in three
categories: mechanisms without an index, mechanisms
with specialized index nodes (centralized search), and
mechanisms with indices at each node (distributed
search). Gnutella uses a mechanism where nodes do
not have an index and queries are propagated from
node to node until matching documents are found.

x

CBA

D

RI x-z

Figure 1. Routing Indices
This search mechanism works by flooding the network
(or a subset of it) in the hope of finding a match for a
query. Although this approach is simple and robust, it
has the disadvantage of the enormous cost of flooding
the network every time a query is generated.

Centralized-search systems use specialized nodes
that maintain an index of the documents available in
the P2P system. To find a document, the user queries
an index node to identify nodes having documents with
the content of interest. These central indices may be
built with the cooperation of the nodes (e.g., Napster
nodes provide a list of available files at sign-in time)
or by crawling the P2P network (as in a web search
engine). The advantages of a centralized-search mech-
anism is efficiency (just a single message is needed to
resolve a query). However, a centralized system is vul-
nerable to attack (e.g., index sites can be shut down
by a court order or a hacker attack) and it is difficult
to keep the indices up-to-date.

A distributed-index mechanism, the option we will
study in detail in this paper, maintains indices at each
node. These distributed indices need to be small, so in-
stead of using traditional “destination” indices, we use
Routing Indices (RIs) that give a “direction” towards
the document, rather than its actual location. To il-
lustrate, consider Figure 1 which shows four nodes A,
B, C, and D, connected by the solid lines. The doc-
ument with content “x” is located at node C, but the
RI of node A points to neighbor B instead of point-
ing directly to C (dotted arrow). By using “routes”
rather than destinations, the index size is proportional
to the number of neighbors, rather than to the num-
ber of documents. We can reduce the size of RIs even
further by using approximate indices, i.e., by allowing
RIs to give a hint (rather than a definite answer) about
the location of a document. For example, in the same

crespo
Published in the Proceedings of the International Conference on Distributed Computing Systems (ICDCS). July 2002.

figure, an entry in the RI of node A may cover doc-
uments with contents “x,” “y,” or “z.” A request for
documents with content “x” will yield a correct hint,
but one for content “y” or “z” will not.

In this paper we study options for building effective
RIs, and evaluate their performance. In particular, the
contributions of this paper are:
• We introduce Routing Indices, an efficient way

of locating content in a P2P system (Sections 3
and 4).

• We present three RIs: the compound, the hop-
count, and the exponential routing indices (Sec-
tions 5).

• We evaluate the performance of RIs via simula-
tions, and find that RIs can improve performance
by one or two orders of magnitude over a flooding-
based system, and by 50-100% versus a random
forwarding system (Section 7).

2 Related Work

The problem of indexing a P2P network is related
to the problem of indexing a distributed database [13].
However, algorithms for indexing distributed databases
make two fundamental assumptions that are not appli-
cable to P2P systems: that nodes are stable and con-
nected most of the time, and that the number of nodes
is small.

There are several working P2P systems currently
available, each with its own “indexing” approach. Nap-
ster [17] uses centralized indices, which, as stated be-
fore, are vulnerable to attack. Gnutella [8] does not
build indices, instead, queries flood a significant part
of the network, resulting in a simple but very costly
approach as just one query can expand into hundred of
thousands of requests through the Gnutella network.
Freenet [7] uses an interesting approach to indexing.
Each node builds an index with the location of recently
requested documents, so if they are requested again,
the document can be retrieved at a very low cost.

There are a number of P2P research systems (CAN
[18], Oceanstore [14], CHORD [21], Pastry [19], and
Tapestry [26]) that can efficiently find documents in
a P2P network. The key differences between those
systems and our approach is that we do not mandate
a specific network structure and that queries are on
the content of the documents rather than on document
identifiers.

Selecting a neighbor for forwarding a query is also
related to traditional routing algorithms [23] such as
Bellman-Ford [1, 6]. The major difference with our
algorithms is that standard routing algorithms are de-
signed to transmit a packet between two nodes through
the shortest route. In our case, we need to get a

B

C

D

E

F

H

G

I

J

A

Q

Q

Q

Q

Figure 2. P2P Example

“packet” from one node to one or more nodes so we
find the best answers to a query. Also, the destina-
tion of a packet is not pre-defined (as in IP routing),
but instead it depends on the query contained by the
packet. IP routing to multiple destinations (multicast
algorithms) has been studied extensively (see for ex-
ample [16]). However, multicast algorithms require the
creation of a relatively stable multicast tree.

The problem of selecting the best database to which
to send a query was studied as part of the GlOSS
project [12, 9]. However, GlOSS assumes the we are
selecting among a set of databases, rather than among
“paths” that lead to a set of databases.

Some recent work has empirically evaluated P2P
systems. A survey and evaluation of centralized-search
P2P systems can be found at [24]. An evaluation and
description of the present state of Gnutella can be
found at [3]. Finally, [25] focuses on search techniques
that do not use indexes, although it also studies one
type of “local area index.” In such indices, a node in-
dexes the content of nodes within “r” hops. However,
these indices are not routing indices, they are tradi-
tional indices.

3 Peer-to-peer Systems

A P2P system is formed by a large number of nodes
that can join or leave the system at any time and that
have equal capabilities. Each node is connected to a
relatively small set of neighbors which in turn is con-
nected to more nodes. In Figure 2, the neighbors of
node A are nodes B, C, and D. Note that there might
be cycles in the network (such as the one caused by
the link between E and G). Each node has a local doc-
ument database that can be accessed through a local
index. The local index receives content queries (e.g., a
request for documents containing the words “database
systems,” a request for documents containing a picture
of the sun, etc.) and returns pointers to the documents
with the requested content.

3.1 Query Processing in a Distributed-Search P2P
System

In a distributed-search P2P system, users sub-
mit queries to any node along with a stop condition
(e.g., the desired number of results). A node receiv-
ing a query first evaluates the query against its own
database, returns to the user pointers to any results,
and, if the stop condition has not been reached, the
node selects one or more of its neighbors and forwards
the query to them (along with some state information).
In turn, each of the neighbors evaluates the query in a
similar fashion, returns result pointers to the user and
forwards the query to neighbors.

To illustrate, consider Figure 2. Node A initially
receives a query. Node A checks for local results and
sends those results to the requesting node. Then, as-
suming that the stop condition has not been satisfied,
node A selects node D as the best neighbor to han-
dle the query and forwards the query to it (dashed
arrow). Note that for nodes to be able to verify if the
stop condition has been reached, we need to include
the number of results found so far as state information
in each query-forwarding message. Then D processes
the query and selects I as the best neighbor to con-
tinue handling the query. Let us assume now that I
has processed the query, but not enough results have
been found to reach the stop condition. In this case,
I returns the query to D which forwards the query to
the next best neighbor (J in this case).

Queries can be forwarded to the best neighbors in
parallel or sequentially. A parallel approach yields bet-
ter response time, but generates higher traffic and may
waste resources. In this paper, we focus on a sequential
forwarding of the queries.

4 Routing indices

In this section we present an example of how the
compound RI (CRI) works. A formal definition of the
algorithms and data structures for RIs can be found
in [4]. Later, in Section 5 we present two other RIs:
the exponential RI and the hop-count RI.

The objective of a Routing Index (RI) is to allow a
node to select the “best” neighbors to send a query to.
A RI is a data structure (and associated algorithms)
that, given a query, returns a list of neighbors, ranked
according to their goodness for the query. The notion
of goodness may vary but in general it should reflect
the number of documents in “nearby” nodes.

As a running example, we will use a P2P system
for retrieval of text documents with the network de-
picted on the right side of Figure 3. For simplicity, this
network does not have cycles (we discuss cycles in Sec-
tion 6). In this system, documents are on zero or more

Documents with topics:
Path # docs DB N T L

B 100 20 0 10 30
C 1000 0 300 0 50
D 200 100 0 100 150

B

C

D

E

F

H

G

I

J

A

Figure 3. A Sample Compound RI

“topics,” and queries request documents on particular
topics. Each node has a local index for quickly finding
local documents when a query is received. Nodes also
have a CRI containing (i) the number of documents
along each path and (ii) the number of documents on
each topic of interest In Figure 3 we show an example
of a CRI for node A with three neighbors (paths): B,
C, and D. For simplicity, we assume that there are
only four topics of interest: databases (DB), networks
(N), theory (T), and languages (L). In the figure, we
can see that we can access 1000 documents through C
(i.e., there are 1000 documents in C, G and H) and
that of those documents, 300 are about “networks” and
50 are about “languages.”

The RI may be “coarser” than the local indices
maintained at nodes. For example, node A could
maintain a more detailed local index in which each
document is further classified into sub-categories. By
keeping a summary of the detailed index, we achieved
a more compact RI at the cost of introducing “er-
rors” when user queries are based on the subcategories.
Specifically, the summarizing of the local index may
introduce overcounts or undercounts in the RI. For ex-
ample, a summarization that groups several subtopics
into a single topic (e.g., “indices”, “recovery”, and
“SQL” into “databases”) may introduce overcounts on
the number of documents available. In fact, a query
for documents on “SQL” will be converted into a query
for documents on “databases,” making us believe that
there are many documents on “SQL” whereas in re-
ality there may be few or even none. Summarization
can also introduce undercounts. For example, if the
summarization uses a frequency threshold (e.g., throws
away topics with very few documents), then we may
believe that there are no documents on a topic when
there are in fact a few.

Given the index, we need now to compute the “good-
ness” of each node for a query. For CRIs we will use
the number of documents that may be found in a path
as a measure of goodness. To compute the number
of documents, we will use the estimators in [10, 11].
Given that our focus is not on the estimators but on
the use and maintenance of RIs, throughout the paper

we will use a simplified model where queries are con-
junction of subject topics, documents can have more
than one topic, and document topics are independent.
Thus, we can estimate the number of results in a path
as: NumberOfDocuments ×

∏
i

CRI(si)
NumberOfDocuments

where CRI(si) is the value for the cell at the column
for topic si and at the row for a neighbor.

To illustrate, let us assume that A receives a query
for documents on “databases” and “languages.” We
estimate the number of results as 20

100 ×
30
100 × 100 =

6 at B, 0
100 ×

0
100 × 100 = 0 at C, and 100

200 ×
150
200 ×

200 = 75 at D. Therefore, the “goodness” of path B
will be 6, of path C will be 0, and of path D will be
75. Note that these numbers are just estimates and
they are subject to overcounts and/or undercounts. In
particular, if there is a strong correlation between the
topics “databases” and “languages,” then path B may
have as many as 20 documents matching the query for
topics “databases” and “languages” On the other hand,
if there is a strong negative correlation between the
topics “databases” and “languages,” then there may
be no documents in path B on either topic.

A limitation of using CRIs is that they do not take
into account the difference in cost due to the number of
“hops” necessary to reach a document. For example,
the documents along path B may all be just one hop
away, while the documents along path C may be scat-
tered in a long chain of nodes and finding them would
require many messages. Later, we will introduce more
sophisticated RIs that do not have this limitation.

In the rest of the section we describe how compound
RIs are used, created, and maintained.

4.1 Using Routing Indices

In this subsection we show how RIs, and in partic-
ular compound RIs, can improve the performance of
query processing in a P2P system. Consider the P2P
system described in Figure 3. In Figure 4 we present
part of the P2P network with RIs attached to each
node. For compactness, we are representing the four
topics of interest: database, network, theory, and lan-
guages with the letters DB, N, T, and L respectively. In
the example we are assuming that the first row of each
RI contains the summary of the local index. (This sum-
mary can be obtained, e.g., by consolidating subtopics
into the main topics, or perhaps by using clustering
on a local keyword index to generate topics for each
of its documents.) In particular, the summary of A’s
local index shows that A has 300 documents: 30 about
databases, 80 about networks, none about theory, and
10 about languages. The rest of the rows represent a
compound RI. In the example, the RI shows that node
A can access 100 database documents through D (60

Local Index

I

J

A D

B

C

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

D
A
I
J

 100 60 0 60 75
 1400 50 380 10 90

 50 25 0 15 50
 50 15 0 25 25

J
D

 50 15 0 25 25
 1550 135 380 85 215

I
D

 50 25 0 15 50
 1550 125 380 95 190

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

Figure 4. Routing Indices

in D, 25 in I, and 15 in J).

When A receives from a client a query for docu-
ments about “databases” and “languages,” it first uses
the local database to answer the query. If not enough
answers are found, it computes the goodness of each
path as explained earlier. In this case, the goodness of
B, C, and D is 6, 0, and 75 respectively, so A selects
D as the best neighbor to forward the query to. In
turn, D returns all local results to the client of A and,
if not enough results are found, computes the good-
ness of I and J (25 and 7.5). Since I has the highest
goodness, D forwards the query to I. In turn, I re-
turns local results, but it cannot forward the query any
further, so (if more results are needed) it returns the
query to D which forwards it to its best next neigh-
bor J . Even though the network in the example is
very small, a query with a stop condition of 50 doc-
uments will generate 9 messages when using flooding;
but only 3 messages if we use the RI. Even if we send
the query serially in a depth-first fashion to neighbors
ranked randomly, we will have 3 messages in the best
case and 9 messages in the worst case. The savings in
the number of messages when using RIs are the result
of forwarding the query only to the nodes that have a
high potential of having results.

The storage space required by an RI in a node is
modest as we are only storing index information for
each neighbor. Furthermore, the storage space per
neighbor can be adjusted by increasing or decreasing
the level of summarization of the index. Specifically, if
s is the counter size in bytes, c is the number of cat-
egories, N the number of nodes, and b the branching
factor (i.e., number of neighbors), then a centralized
index would require c × (t + 1) × N bytes, while each
node of a distributed system would need c× (t +1)× b
bytes. Thus, the total for the entire distributed system
is c× (t + 1)× b×N bytes. Although the RIs require
more storage space overall than a centralized index, the
cost of the storage space is shared among the network
nodes.

4.2 Creating Routing Indices

Let us now turn our attention to how RIs are cre-
ated. Returning to our running example, let us assume
that initially there is no connection between A and D.
The initial state of the system is shown by the solid
lines of Figure 5a. When the A − D connection is es-
tablished, node A informs node D of all the documents
that can be accessed through node A. Specifically, node
A aggregates its RI and sends it to D. In our exam-
ple, the aggregation is done by adding all the vectors in
the RI. (We describe additional aggregation procedures
in [4].) Thus, A sends D a vector saying that it has
access to 1400 documents (300 + 100 + 1000), of which
50 are on databases (30 + 20 + 0), 380 on networks
(80+0+300), 10 on theory (0+10+0), and 90 on lan-
guages (10 + 30 + 50). A does not need to send more
information as D does not need to know the precise
location of the documents, but only that they can be
accessed through A. After D receives the aggregated
RI from A, it adds an additional row to its RI with
A’s identifier and A’s aggregated RI (as shown in Fig-
ure 5b). Note that by aggregating RIs we reduce both
the amount of information transmitted and the storage
space used. Similarly, D, aggregates its RI (excluding
the row for A if it is already in the RI) and sends its
aggregated RI to A. Note that the RI creation process
at A and D can be done in parallel.

After A and D update their RIs, they need to inform
their other neighbors that now they have access to more
documents. Thus, D sends an aggregate of its RI to
I (excluding I’s row) and to J (excluding J ’s row) as
shown in Figure 5b. Then I and J update their RI
by replacing the row for D with the new information
(not shown in the figure). If I and J were connected
to nodes other than D, they would have to send an
update to those nodes too.

4.3 Maintaining Routing Indices

The process of maintaining RIs is identical to the
process used for creating them. To illustrate, let us
suppose now that client I introduces two new docu-
ments about “languages” in its database. To update
the RIs of its neighbors, I summarizes its new local
index, aggregates all the rows of its compound RI (ex-
cluding the row for D), and sends this information to
D. Then D replaces the old row for I with the received
aggregated RI. In turn, D computes and sends new ag-
gregates to A and J . When receiving the update, A
and J update their RIs and compute new aggregates
for their neighbors, and so on. For efficiency, we may
delay exporting an update for a short time so we can
batch several updates, thus, trading RI freshness for a
reduced update cost. We can also choose not to send

I

J

A D

B

C

A
B
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10 D

I
D

J
D

 150 75 0 85 100
 50 25 0 15 50

I
J

 50 25 0 15 50
 50 15 0 25 25

 100 60 0 60 75

 150 85 0 85 125
 50 15 0 25 25

200 100 0 100 150

1400 50 380 10 90

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

(a)

I

J

A D

B

C
 # D N O S

I
D

 50 25 0 15 50

 # D N O S

J
D

 50 15 0 25 25

 150 75 0 85 100

 150 85 0 85 125

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

 # D N O S # D N O S

D
A
I
J

 100 60 0 60 75

 50 25 0 15 50
 50 15 0 25 25

 1400 50 380 10 90

1550 135 380 85 215

1550 125 380 95 190

Updates for B and C

(b)
Figure 5. Creating a Routing Index

updates when the difference between the old and the
new value is not significant. By not sending minor
updates, we can again trade reduced update cost for
accuracy of the RI.

Finally, a special but frequent update case occurs
when a node disconnects from the network. To illus-
trate, let us suppose that I disconnects from the net-
work. Node D detects the disconnection and updates
its RI by removing the row for I. Then D informs its
neighbors of the change on the number of documents
it can access by sending new aggregates of its RI to
them. In turn, the neighbors of D update their RIs
and propagate the new information to their neighbors.
Note, that we did not need I’s participation (or the par-
ticipation of any other neighbor) in the disconnection
process. Not requiring the participation of a discon-
necting node is an important feature in a P2P system
where nodes can come and go at will.
5 Alternative Routing Indices

5.1 Hop-count Routing Indices

In this subsection, we present an alternative data
structure for an RI: a hop-count RI. The main limita-
tion of the compound RI is that it does not take into
account the number of “hops” (query forwardings) re-
quired to find documents. In the hop-count RI we
stored aggregated RIs for each “hop” up to a maxi-
mum number of hops. We call this number the horizon
of the RI. We show in Figure 6 a sample hop-count
RI with a horizon of 2 hops. The node with this hop-
count RI has three neighbors: X, Y , and Z. With one
hop via neighbor X, the node can find 60 documents,

1 Hop 2 Hops
Node # DB N T L # DB N T L

X 60 13 2 5 10 20 10 10 4 17
Y 30 0 3 15 12 50 31 0 15 20
Z 5 2 0 3 3 70 10 40 20 50

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 6. A sample Hop-count RI for node W

out of which 4 are about databases, 2 about networks,
5 about theory, and 10 about systems. The node can
also find 20 more documents through X with 2 hops
(i.e., at X’s neighbors). Note, that we do not have
information beyond the horizon with this kind of RI.

The estimator of a hop-count RI needs a cost model
to compute the goodness of a neighbor. For example,
neighbor X may be preferable over neighbor Y for a
query on topic “DB,” as through X we would find 13
results with one hop, while it would require two hops to
find that many results through Y . On the other hand,
we can find more results (31) when going through Y .

If we define cost in terms of number of messages (we
will expand on the notion of cost in Section 7), then
we can define the goodness of a neighbor as the ratio
between the number of documents available through
that neighbor and the number of messages required to
get those documents. So a neighbor that allows us to
find 3 documents per message is better than a neigbor
that allows us to find 1 document per message.

A simple model that allows us to compute this ra-
tio is the regular-tree cost model. The model assumes
that document results are uniformly distributed across
the network and that the network is a regular tree
with fanout F . Under these assumptions, it takes
Fh messages to find all documents at hop h. Thre-
fore, we can compute the number of documents per
message by dividing the expected number of result
documents at each hop by the number of messages
needed to find them. Formally, we define the good-
ness (goodnesshc) of Neighbori with respect to query
Q for hop-count RI as: goodnesshc(Neighbori, Q) =∑

j=0..h
goodness(Ni[j],Q)

F j , where h is the horizon of the
hop-count RI, goodness() is the estimator for CRI, and
Ni[j] is the RI entry for j hops through Neighbori.
In our example, if we assume F = 3, the goodness
of X for a query about “DB” documents would be
13+10/3 = 16.33 and for Y would be 0+31/3 = 10.33,
so we would prefer X over Y .

Creation and update mechanisms for hop-count RIs
are described in the extended version of this paper [4].

Path # DB N T L

X 66.67 16.33 5.33 6.33 15.67
Y 46.67 10.33 3.00 20.00 18.67
Z 28.33 5.33 13.33 9.67 19.67

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 7. A sample Exponential Routing Index
for Node W

5.2 Exponentially aggregated RI

The hop-count RI is effective in taking into account
the number of hops. However, this benefit comes at
a higher storage and transmission cost than the com-
pound RI. Moreover, in Section 7.2 we will see that the
hop-count RI performance is negatevely affected by the
lack of information beyond the horizon (a hybrid CRI-
HRI overcomes this disadvantage, but it still does not
solve the storage and transmission cost problem). In
this subsection we present an alternative index struc-
ture, the exponential aggregated RI, that overcomes
these shortcomings at the cost of some potential loss in
accuracy.

The exponentially aggregated RI stores the result of
applying the regular-tree cost formula to a hop-count
RI. Specifically, each entry of the ERI for node N con-
tains a value computed as:

∑
j=1..th

goodness(N [j],T)
F j−1 ,

where th is the height and F the fanout of the assumed
regular tree, goodness() is the Compound RI estima-
tor, N [j] is the summary of the local index of neighbor
j of N , and T is the topic of interest of the entry.

We show in Figure 7 an exponentially aggregated
RI computed from our sample network of Figure 6. In
the figure, we assume that the neighbors of X, Y , and
Z are leaf nodes and that the fan out of the tree is
3. The entries for topic “DB” for X and Y have the
values 13 + 10/3 = 16.33 and 0 + 31/3 = 10.33.

The exponential RI makes the same assumptions as
the regular-tree cost model and may not be realistic in
some configurations, but it can still be used as an ap-
proximate index. There is a fundamental difference be-
tween the exponential RI and the hop-count RI. While
the hop-count RI does not have any information be-
yond the horizon, with the exponential RI we can keep
information for all nodes accessible from each neighbor
in the RI. In fact, we will see in Section 7.2 that the
exponential RI outperforms the hop-count RI in most
cases.

Creation and update mechanisms for exponential
RIs are described in the extended version of this pa-
per [4].

B

C

D

E

F

H

G

I

J

A

Update

Figure 8. Cycles and Routing Indices
6 Cycles in the P2P Network

In this section we analyze how cycles affect the pro-
cess of creating and updating RIs as well as strategies
to minimize those effects. To illustrate the effect of
cycles, we will use the initial setup of Figure 3, but
with the network depicted in Figure 8 (with the cycle
A−B −E −G− C −A). Let us assume that node A
adds to its database two new “theory” documents and
sends a new aggregate of its RI to B. Node B sends the
update to its E and F neighbors, prompting E to send
an update to G, which sends an update to C, which
finally sends an update to A. When A receives this
update, it will mistakingly assume that more “theory”
documents are available via node C, but those extra
documents are its own. Worse than that, the update
from C will prompt A to send an update to its neigh-
bors, informing them that they can access two more
theory documents, creating an infinite loop. There are
three general approaches for dealing with cycles:
No-op solution: No changes are made to the algo-
rithms; this solution only works with the hop-count
and the exponential RI schemes. In the case of the
hop-count RI, cycles longer than the horizon will not
affect the RI. However, shorter cycles will affect the
hop-count RI but their effect will be limited if we are
using the regular-tree cost model. However, the cycle
increases the cost of creating/updating the hop-count
RI as updates sent by a node return to it (via the cycle),
causing the node to send a new update to all its neigh-
bors (which in turn send the update back to the node
again). The cycle is broken when the update reaches
the horizon of the hop-count RI. Similarly, in the case
of the exponential RI, updates are sent back to the orig-
inator. However, the effect of the cycle will be smaller
and smaller every time the update is sent back (due
to the exponential decay), until the difference between
the old update and the new update is small enough
and the algorithm stops propagating the update. As
in the hop-count RI, the main effect of the cycle is the
increase in cost of creating/updating the RI.
Cycle avoidance solution: In this solution we do
not allow nodes to create an “update” connection to
other nodes if such connection would create a cycle.

The techniques for cycle avoidance have been exten-
sively studied (see [22] for a survey) and we do not
cover it further in this paper. The main disadvantage
of this approach is that in the absence of global infor-
mation we may end with a suboptimal solution.
Cycle detection and recovery: This solution de-
tects cycles sometime after they are formed and, after
that, takes recovery actions to eliminate (or neutralize)
the effect of the cycles. In the example of Figure 8, cy-
cles can be detected by having the originating node of a
query or an update, let us say A, include a unique mes-
sage identifier in the message. Any update (or query
forwarding) that any other node sends as a consequence
of this message will have the original message identi-
fier. If a message with the same identifier returns to A
(let us say from C), then A knows that there is a cycle
and that a recovery procedure should be started.

7 Experimental Results

In this section, we evaluate search mechanisms for
P2P systems. First, we present our model of a P2P sys-
tem. Then we introduce a simulation tool that allows
us to evaluate different search mechanisms efficiently.
We then use our tool to study the performance of differ-
ent mechanisms as well as the factors that affect their
performance. We close the section with an analysis of
the cases where RIs can be used effectively.

7.1 Modeling search mechanisms in a P2P system

Our goal in this subsection is to identify the ele-
ments of a typical search mechanism in a P2P system,
so we can model each element and study its impact
on performance. A typical P2P system is a network
of nodes T where each node contains a set of docu-
ments. Users send requests consisting of a query q
and a stopCondition to a node of the P2P system.
The objective of the search mechanism is to answer
those requests by obtaining a set of documents of size
stopCondition that matches the query q. In addition,
search mechanisms allow for updates such as the addi-
tion of nodes or new documents.

To process queries and updates we use the mecha-
nisms described in the previous sections (CRIs, HRIs,
ERIs). For comparison purposes, we add an additional
mechanism: No-RI. Instead of using an RI to choose
the best neighbor to forward a query, this search mech-
anism simply chooses a random neighbor.

To further model the elements of a search mecha-
nism, we need to define the topology of the network,
the location of document results, how costs are mea-
sured, and cycle policies (described in detail in [4]).

The topology of the network defines the number of
nodes and how they are connected. In our model, we

Parameter Name Description Value
Network Configuration Parameters
NumNodes Number of nodes in the network 60000
T Topology of the P2P network tree
F Branching factor for tree topology 4
EL Extra links for tree+cycle topology 10
o Outdegree exponent for power law -2.2088
Document Distribution Parameters
QR Total Number of Query Results 3125
D Document distribution 80/20
RI Parameters
Creationsize Avg. size of creation/update message 1000 b
Querysize Avg. size of query message 250 b
StopCondition Number of documents requested 10
H Horizon for HRIs 5
A Decay for ERs 4
c RI Compression 0%
minUpdate min % diff for update propagation 1%

Figure 9. Simulation Parameters
consider three kinds of network topologies: a tree, a
tree with added cycles, and a power-law graph [15].
The first topology, a tree, is of interest because it does
not have cycles (a good base case for our algorithms).
For the second topology, we start with a tree and we
add extra vertices at random (creating cycles) so we
can measure the impact of cycles on the search mecha-
nisms. The third topology, a power-law graph, is con-
sidered a good model for P2P systems and allows us to
test our algorithms against a “realistic” topology [5].

We model the location of document results using
two distributions: uniform and an 80/20 biased distri-
bution. Under the uniform distribution all nodes have
the same probability of having each document result
(nodes can have more than one document result). The
second distribution assigns uniformly 80% of the doc-
ument results to 20% of the nodes (and the remaining
20% of the documents to the remaining 80% of the
nodes).

Modeling the cost of a search mechanism is a com-
plex task. We can model the cost based on the re-
sources used in the P2P system (e.g., network, storage
space, or processing power) or based on the user expe-
rience (e.g., mean query response time, query through-
put, or query turnaround time). In current P2P sys-
tems, the critical resource is the network [3] as many
of the nodes are connected through links with limited
bandwidth (e.g., dial-up connections, DSL, and cable).
Therefore, in this paper we focus on the network and
we use the number of messages generated by each al-
gorithm as a measure of cost. This is not to say that
user-based factors (such as response time) are not im-
portant, but by focusing on the network we are also
improving those factors.

7.2 Evaluating P2P Search Mechanism

In this section we experimentally compare the three
proposed RIs: compound RI (CRI), hop-count RI

0

100

200

300

400

500

600

CRI HRI ERI No RI

Routing Index

N
um

be
r

of
 M

es
sa

ge
s

uniform
80/20

Figure 10. Comparison of CRI, HRI, and ERI

(HRI), and exponential RI (ERI) against each other
and against the No-RI search mechanism. We also ex-
plore how the performance of the RIs are affected by
approximate indices, different stop conditions, docu-
ment result distribution, number of document results,
and network topology.

To evaluate search mechanisms we built a simulator.
The simulator receives as input a P2P model and an op-
eration that can be an update or a query. The simula-
tor iterates over different network topologies and docu-
ment result locations, and outputs the average number
of messages necessary to perform the operation plus
a confidence interval. All results were computed with
at least a 95% confidence interval of having a relative
error of 10% or less. Parameters are set to the base
values presented in Figure 9 unless stated otherwise.
In the extended version of this paper [4], we explain
in detail the operation of the simulator as well as the
choice of the base values for the parameters.

Figure 10 shows the number of messages needed to
process a query when using each kind of RI for two
document distributions. The advantage of using RIs is
obvious, we are able to reduce the number of messages
by half when compared to not using RI. Among the
RIs, CRI had the best performance, followed by the
ERI and HRI. This difference in performance is a func-
tion of the number of nodes used to generate the index.
In particular, CRI uses all nodes in the network, HRI
uses nodes within a predefined a horizon, and ERI uses
nodes until the exponentially decayed value of an in-
dex entry reaches a minimum value (resulting in using
more nodes than HRI, but fewer than CRI). This result
shows that the more nodes an RI uses to compute the
goodness of a path, the better the RI is. However, we
will see that a larger number of nodes implies a higher
update cost.

In Figure 10 we also present the effect of using two
document distributions, an 80/20 biased and a uni-
form document distribution. Surprisingly, a 80/20 bi-
ased distribution does not improve the performance of
RIs much, but it degrades the performance of a No-RI

0

50

100

150

200

250

300

350

400

450

500

0% 50% 67% 75% 80% 83%

Index Compression

M
es

sa
ge

s CRI

HRI

ERI

No-RI

Figure 11. Effect of Overcounts

search mechanism. To understand this result, we ana-
lyzed traces of our simulations. In the case of RIs under
a 80/20 document distribution, the algorithm directed
the queries to nodes with a high number of document
results, but to reach those content-loaded nodes the
queries needed to travel through several nodes that had
very few or no document results. On the other hand,
under a uniform document placement, the algorithms
followed good paths where at each node it obtained a
few results. In summary, in one case, we collected re-
sults by traveling over an almost empty path to a full
node, while in the other case, we collected results by
traveling through a path of a similar length where each
node contributes a few documents. The overall result
was that the number of messages per document result
was about the same in both cases. In the case of the
No-RI approach, an 80/20 document distribution pe-
nalizes performance as the search mechanism needs to
visit a number of nodes until it finds a content-loaded
node (generating a large number of messages in the
process).

We also compared RIs against non-index/flooding
solutions such as Gnutella. In that case, RIs reduce
the number of messages by two orders of magnitude
(graph not shown). However, this comparison is not
completely fair as non-index systems find all results
(versus only a user-defined number of results when us-
ing RIs) and they potentially have a better response
time (as queries are processed in parallel, rather than
sequentially). However, finding all results may be an
overkill for most applications as users rarely examine
more than the first 10 top results returned by a search
engine [2]. In addition, low response times may be hard
to achieve in Gnutella-like systems because of network
contention created by tens of thousands of messages
generated by each query.

We studied how increases in the requested number
of documents affects RIs (graph not shown). As ex-
pected, the higher the number of requested documents,
the more messages are generated. However, the in-
crease on the number of messages is linear for all RIs,

showing that they scale well on this parameter. We
also analyzed the effect of a decrease on the number
of document results available (graph not shown). In
that case, we obtained a very similar graph where the
number of messages grows linearly with a reduction of
document results.

We now investigate how errors in RIs, and particu-
larly overcounts, affect RI performance. As discussed
in Section 4, errors can occur in a variety of ways; here
we select one scenario to illustrate. We assume that
documents are organized into categories, and the in-
dex is a hash table of categories. Several categories may
hash to the same bucket, so the count in a bucket repre-
sents the aggregate number of documents in those cat-
egories. For example, suppose there are 3 “database”
documents, and 2 “network” ones. If “database” and
“network” hash to the same bucket, the consolidated
bucket will have a count of 5 documents. If a query is
looking for “database” documents, when using the RI,
we will believe that they are 5 of them, when in reality
there are only 3 (an overcount). (Instead of adding the
original document counts, we could have also chosen
to take the minimum of them, generating undercounts;
or we could have averaged them, generating mixed er-
rors.)

As the table size is reduced, more and more over-
counts occur. In Figure 11, we show the performance
of CRI, HRI and ERI, as a function of the “index com-
pression.” For example, a 50% value means that the
number of hash table buckets is half the number of cat-
egories, while 83% represents a table with one-sixth the
categories. (Note that the scale is not linear.) From
the graph, we can see that even though there is a loss
of performance because of overcounts, this loss is mod-
est even in the case of significant reductions on the size
of the index. Moreover, query processing when using
RIs is still far cheaper than No-RI even if we use the
highest compression levels. We conducted additional
experiments for undercounts and mixed errors as well
as for other error models. Those experiments had sim-
ilar results to the one presented here and are omitted
for brevity.

In Figure 12 we study how ERIs perform when cy-
cles are added to a tree network. Cycles are cre-
ated by adding random links to a tree network with
NumNodes − 1 links. As expected, the number of
messages increases as we add more links and cycles
are created. The increase in the traffic is the result of
two factors. First, there is a loss of accuracy of the
RI. In the case of the “detect and recover” policy, this
loss is the result of missing the best route to the re-
sults (as explained in Section 6), and in the case of the
“no-op” policy the accuracy suffers because overcounts

0

100

200

300

400

500

600

0 1 10 100 1000

Added Links

M
es

sa
ge

s

Detect
Ignore

Figure 12. Effect of Cycles

0

100

200

300

400

500

600

700

CRI HRI ERI No RI

M
es

sa
ge

s Tree

Tree+Cycle

Powerlaw

Figure 13. Network topology
introduced in the generation of the RI. Second, during
query processing the number of messages increases. In
the case of the “detect and recover” policy, those extra
messages are the result of return-queries messages sent
by a node that detects a cycle. In the case of the no-op
policy, extra messages are generated when we traverse
a cycle more than once, finding document results that
were already found in a previous iteration. In the fig-
ure, we observe that the increase in the number of mes-
sages is small if we use the “detect and recover” policy,
but it can be significant if we choose to ignore cycles.
An unexpected result is that the number of messages
drops if we add a large number of links. This drop
is the result of the added connectivity that additional
links create, which allows shorter routes to document
results. Similar performance to the one presented for
ERI is shown by HRI and CRI (when using the ignore-
detect policy, as CRI is not guaranteed to terminate
when using the no-op policy).

In Figure 13 we study how RIs perform in different
network topologies. The result of our analysis is sur-
prising at first glance: RIs perform better in a power-
law network than in a tree network. There are two
reasons for this result. First, while in a tree-like net-
work the connectivity of every node (except leaf nodes)
is the same, in a power-law network a few nodes have
a significantly higher connectivity than the rest. By
analyzing the traces of our simulation, we found that
the query algorithms actually direct the queries to-
wards those well-connected nodes. After getting to

0

10000

20000

30000

40000

50000

60000

70000

CRI HRI ERI

M
es

sa
ge

s Tree

Tree+Cycle

Powerlaw

Figure 14. Updates and Network Topology

these highly connected nodes, a large number of results
is collected without having to issue many messages.
The second reason for this performance improvement is
that power-law distributions generate network topolo-
gies where the average path length between two nodes
is lower than in tree topologies. Lower path length
improves performance as we need less messages to go
from node to node. On the other hand, these same two
factors hinder the performance of the No-RI approach.
In a power-law network, there are very few highly con-
nected nodes and it is not easy to find them if we just
move randomly as No-RI does. As a result, the No-RI
approach visits a significant number of nodes until it
finally stumbles onto a highly connected node (generat-
ing a large number of messages in the process). Shorter
path length also hinders No-RI as bad decisions about
which neighbor to contact often result in return-query
messages.

Figure 14 shows the number of messages needed to
update each kind of RI for each network topology. The
graph shows the cost of one batch of updates, propa-
gated throughout the network. In the graph we can
see that the cost of CRI is much higher when com-
pared with HRI and ERI. This is the result of CRI
propagating the update to all nodes, while HRI and
ERI only propagate the update to a subset of the net-
work. This result confirms that the additional informa-
tion and better query performance of CRIs come with
a high price tag. On the other hand, HRIs and ERIs
have very low update costs and their query processing
performance is very close to the one of CRIs, making
them an excellent choice as the search mechanism of a
P2P system. In the graph we can also see that network
topology has little impact on the update performance
of RIs, as there is low or no correlation between the
network topology and the number of nodes that needs
to be updated.

We also studied the tradeoff between query and up-
date costs for RIs (figure not shown). For a system pro-
cessing 1032 queries per minute (the average query load
observed on a section of the Gnutella network [24]), the

point where the total cost of using ERIs is the same as
the cost of a system without RIs was at an update load
of 36 updates per minute. In practice we would expect
the number of updates to be way below 36 per minute,
especially since it is not that critical to keep indexes up
to date and updates can be batched together. Thus,
the search improvements afforded by RIs are seldom
outweighed by the cost of updating them.

8 Conclusions

In this paper we studied how to improve the effi-
ciency of content search in a peer-to-peer system. We
achieve greater efficiency by placing Routing Indices in
each node. Three possible RIs: compound RIs, hop-
count RIs, and exponential RIs were proposed and ex-
perimentally evaluated using simulations. From our
experiments we conclude that ERIs and HRI offer sig-
nificant improvements versus not using an RI, while
keeping update costs low. We belive that routing in-
dices, and in particular ERIs and HRIs, can help im-
prove the search performance of current and future P2P
systems.

References

[1] R. Bellman. Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ, 1957.

[2] S. Brin. The anatomy of a large-scale hypertextual
web search engine. In 7th WWW Conference, 1998.

[3] Clip2.com, at: http://dss.clip2.com/gnutella.html.
Gnutella: To the Bandwidth and Beyond.

[4] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. Technical report, Computer Sci-
ence Department, Stanford University, March 2002. At
http://dbpubs.stanford.edu/pub/2001-48.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, 1999.

[6] L. Ford and D. Fulkerson. Flows in Networks. Prince-
ton University Press, Princeton, NJ, 1962.

[7] Freenet. At http://freenet.sourceforge.com.
[8] Gnutella. At http://gnutella.wego.com.
[9] L. Gravano and H. Garcia-Molina. Generalizing gloss

for vector-space databases and broker hierarchies. In
Proceedings of VLDB, 1995.

[10] L. Gravano, H. Garcia-Molina, and A. Tomasic. The
effectiveness of gloss for the text-database discovery
problem. In Proceedings of SIGMOD, 1994.

[11] L. Gravano, H. Garcia-Molina, and A. Tomasic. Pre-
cision and recall of gloss estimators for database dis-
covery. In Proceedings of PDIS, 1994.

[12] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss:
Text-source discovery over the internet. TODS, 2000.

[13] D. Kossman. The state of the art in distributed queyr
processing. ACM Computing Survey, September 2000.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent
storage. In ASPLOS, 2000.

[15] B. H. L.A. Adamic A.R. Puniyani, R. M. Lukose.
Search in power-law networks. Techni-
cal report, HP Labs, 2001. Available at
http://www.hpl.hp.com/shl/papers/plsearch/.

[16] C. K. Miller. Multicast Networking and Applications.
Addison Wesley, 1998.

[17] Napster. At http://www.napster.com.
[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network.
In ACM SIGCOMM, August 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[20] Seti At Home. At http://setiathome.ssl.berkeley.edu.
[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,

and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. ACM
SIGCOMM, 2001.

[22] A. Tanenbaum and A. Woodhull. Operating Systems
Design and Implementation. Prentice-Hall, Inc., 1999.

[23] A. S. Tanenbaum. Computer Networks. Prentice Hall,
1996.

[24] B. Yang and H. Garcia-Molina. Comparing hybrid
peer-to-peer systems. In VLDB, 2001.

[25] B. Yang and H. Garcia-Molina. Efficient search in peer-
to-peer networks. In ICDCS, 2002.

[26] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, Com-
puter Science Division, U. C. Berkeley, April 2001.

