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ABSTRACT
Designing an archival repository is a complex task because
there are many alternative configurations, each with differ-
ent reliability levels and costs. In this paper we study the
costs involved in an Archival Repository and we introduce
a design framework for evaluating alternatives and choosing
the best configuration in terms of reliability and cost. We
also present a new version of our simulation tool, ArchSim/C
that aids in the decision process. The design framework and
the usage of ArchSim/C are illustrated with a case study of
a hypothetical (yet realistic) archival repository shared be-
tween two universities.

1. INTRODUCTION
Digital information can be lost for a variety of reasons:

magnetic decay, format and device obsolescence, human or
system error, among many others. A solution is to build an
archival repository (AR), a system capable of storing and
preserving digital objects (e.g., movies, technical reports)
as technologies and organizations evolve [1].

Designing an AR is difficult, as there are many configu-
ration options and uncertainties about the future. For ex-
ample, one must decide how many sites to use, what types
of disks or tape units to use, what and how many formats
to use to store documents, how frequently to check existing
documents for errors, what strategy to use for error recovery,
how often to migrate documents to a more modern format,
and so on. On top to this, the designer needs to predict
future events such as the reliability of sites and disks, sur-
vivability of formats, how many resources will be consumed
by the recovery algorithms, how frequently the recovery al-
gorithms will be invoked, how many user accesses will be
made to the documents, and many other uncertainties.

Two important factors must be considered in AR design:
the level of assurance (e.g., on average a document will not
be lost for 1000 years) and the cost (e.g., an initial invest-
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ment of 1 million dollars and yearly expenses of 100 thou-
sand dollars). There has been some research on predicting
the level of assurance of a given AR [4], but there has been
little or no work on predicting the cost of an AR.

Predicting the cost of an AR is difficult task. First, we
need to estimate the cost for each “event” such as the AR
creation, the failure and repair of a disk, etc. For many of
these events, we may also have to predict when they will
happen. For example, since we do not know when a disk
will fail, we cannot deterministically predict when and how
often we will pay for its repair. Second, we may not know for
certain future costs, so we may have to represent them with
probability distributions (e.g., the price of a disk may be be-
tween $100 and $150). As we will see in this paper, deriving
cost estimates and likelihoods for a given AR requires a lot
of “guess work.” However, the alternative of ignoring costs
altogether can easily lead to systems that are overdesigned
and overpriced, or that do not meet user expectations.

In this paper we show how AR costs (and failures) can be
modeled, albeit in a rough way, so that rational decisions
can be made. In particular, we present a complete design
framework for making cost-driven decisions about ARs, and
a powerful simulation tool, ArchSim/C that aids in the pro-
cess. Our design framework is based on Decision Analysis
(DA) theory [9] and we believe that it is a good way of struc-
turing the design of archival repositories. ArchSim/C can
model important configuration options, such as multiple for-
mats, preventive maintenance, and failure distribution func-
tions. By using specialized techniques, ArchSim/C is able to
provide cost and reliability information for a configuration
in a time frame that allows the exploration and testing of
different policies. To illustrate the framework, we use as a
running example a case study based on a hypothetical AR
of MIT/Stanford technical reports.

The contributions of this paper are:

• An in-depth study of the costs involved in an AR.
• A comprehensive design framework for making AR

cost decisions.
• A new version of our simulation tool that can predict

the reliability and the cost of an AR.
• A demonstration of the framework in a case study.



2. ARCHIVAL REPOSITORIES
We define an Archival Repository (AR) as a repository

that guarantees long-term data survivability. In this sec-
tion we study the elements of a typical archival repository
(AR), so we can later evaluate their reliability and cost. A
typical AR is formed by a data store that can fail and an
archival system (AS) that ensures long-term survivability of
its documents. The AS provides fault tolerance by managing
multiple materializations for each document. A materializa-
tion is the set of all the components necessary to provide
some sort of human access to a document. For example, a
materialization may include the bits, disks, and format in-
terpreters necessary to display a technical report. Figure 1
shows the AS main functions (in solid-line boxes), the non-
fault-tolerant store (in a dashed-line box), and the archival
documents. The arrows represent the runtime interactions
between the elements. This representation can model many
existing archival systems including the Computing Research
Repository [8], the Archival Intermemory Project [7, 2], and
the Stanford Archival Vault [3].
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Figure 1: Archival Repository Model

The data store encompasses the set of components, such
as sites, disks, or format interpreters that make material-
izations accessible. Because the store is not fault tolerant,
materializations may be lost. A materialization is consid-
ered lost when any of its components has failed. If all of the
materializations of a document are lost, then the document
is considered lost.

The AS monitors materializations, and when a failure is
detected, attempts to repair it. Further, the preventive
maintenance module take actions to avoid failures. For ex-
ample, the AS may copy components that are stored on a
disk that is close to the end of its expected life, onto a newer
disk. The AS may also initiate system upgrades to take ad-
vantage of newer technologies. In summary, the main func-
tions of the AS are: document creation, document retrieval,
failure detection, failure repair, preventive maintenance, and
upgrade management.

3. AR COSTS
We can see the life of an AR as a sequence of events such

as the failure of a disk, user access to a document, and mak-
ing a copy of a document. A cost event is an event that
has an economic impact. The definition of what has an eco-
nomic impact will vary from organization to organization.
For example, an organization may define economic impact as
anything that has an impact on the accounting books (e.g.,
expenses and depreciation of capital equipment). Another
organization may extend the definition to include expenses
incurred by the users (e.g., expenses because of unavailabil-
ity of the system). Cost events may or may not be triggered
by a physical event. For example, an organization may buy

a maintenance contract for disks under which an annual fee
is paid in exchange for free repairs of all disks that may fail
during the year. In this case, the failure of a disk (a physical
event) will not have any economic impact (and thus it is not
a cost event), while the annual payment for the maintenance
contract (which is not an AR physical event) will be a cost
event.

How can we compare the total cost of two ARs? Ideally,
we would like to assign a monetary value (e.g., dollars) to
each event in the sequence, and then, aggregate those costs
into a single value. Having done that, we can simply choose
the system with the lowest cost. If we know the sequence
of costs events and each future cost can be deterministically
computed (e.g., disk prices will decreased by 5% annually
from current prices), this is a feasible task. In this case, we
compute the monetary value of each event and we aggregate
them by computing the average annual system cost, or ASC
(e.g., the AR will cost $100,000 annually).

However, as we explained in the introduction, we may
not know the exact sequence of cost events. In addition,
we may not know deterministically future costs and we may
have to represent costs as probability distributions. In this
case, the system is characterized by a probability distribu-
tion of ASCs (e.g., with probability 0.3, the annual cost
will be $100,000; with probability 0.7 it will be $150,000).
Although in simple cases the ASC distribution can found
analytically, in general, we have to rely on simulations to
obtain an approximation of the distribution.

With probabilistic ASCs, choosing the best AR is not
straightforward. The general problem of choosing between
two probability distributions of costs has been studied in [11].
In the extended version of the paper [5], we describe several
ways of choosing between distributions, but in this paper,
we will use the simplest way of selecting the best of two
cost distributions: namely, we will choose the one with the
lowest mean (average). Given this, throughout the paper,
we will frequently talk about the mean annual system cost
(MASC) as representative indicator for the distribution of
the average annual system cost.

3.1 A Taxonomy of Cost Sources
In this section, we classify the cost sources in an Archival

Repository. Our goal is to understand those sources, so we
can use them as building blocks for cost events. The problem
of classifying cost sources for computer systems has been
studied in [6], but we are not aware of any studies for the
specific case of Archival Repositories. The most common
cost sources in an Archival Repository can be broken down
into the following categories:

Hardware and Software: This category includes all
the expenses (including lease fees) for servers, clients, disks,
software, the network, and peripherals. Although, this is
the most obvious source of cost for a computer system, it
only represents about 20% of the total cost for the system [6].
Usually, it is easy to estimate the cost of the initial hardware
and software, as we can just use market prices. However, for
replacement hardware and software, this is a more compli-
cated process as we need to predict future prices. Moreover,
this prediction is often obtained in the form of a probabil-
ity distribution, based on current trends, as well as possible
future technological developments. For example, when pre-
dicting disk costs ten years from now, we may conclude that
with 60% probability a terabyte will cost $10 or less, with



80% probability it will cost $15 or less, and with 99% prob-
ability it will cost $50 or less.

Non-labor Operational costs: This category includes
all the costs (different than labor) necessary to maintain the
AR operational. For example, these cost will include the
electricity consumed by the system, air conditioning, and
physical space. As with the Hardware-and-Software cat-
egory, it is easy to estimate the initial cost of non-labor
operational costs. For future costs, the major challenge in
estimating theses costs is trying to predict the future needs
of the components of the AR. For example, technological
improvements may reduce the need for physical space, but
they may increase the need for air conditioning.

Labor costs: This category includes all the human-related
costs necessary for the AR. In particular, this will include
management (e.g., system administrator), support (e.g., help
desk), and development (e.g., application developers).

Information acquisition: Information is sometimes free
(e.g., technical reports, thesis), but in general, libraries need
to pay for information (e.g., journals). This payment may
be a one-time fixed cost, periodic payments (subscriptions),
or, more infrequently, pay per use. In some context, we may
choose to ignore this cost and considered it “the cost of do-
ing business” (i.e., the library will have to provide access
to information even if they do not have an AR). However,
we should consider this cost if the creation of the AR will
change the way the library pays for information (for exam-
ple, moving from a paper-based library to a digital library
with publisher charging different amounts for paper journals
than for digital journals).

Insurance: We define insurance as any agreement where
an outside party takes the risk of a specific failure in an AR
component in exchange of a fixed payment. An example
of insurance is a maintenance contract where the library
pays a fixed amount to a company that replaces failed disks.
Insurance is important not only because of its direct cost,
but also because it can reduce the variance of the AR cost.
If we are able to “insure” all uncertain events, then we will
have a deterministic ASC.

Unavailability: If the system is not available, there may
be an economic impact for the organization. Unavailabil-
ity may be caused by a system failure, but it can also occur
when system resources are diverted to maintenance or repair
tasks. For example, a user may be blocked because the sys-
tem is checking the storage device that holds the requested
document for errors. Similarly, the system may only be able
to handle a fraction of the normal users when it is migrating
documents to a new format.

Measuring the cost of unavailability is a difficult task. If
users pay for access, we may be able to assign a direct cost
corresponding to the lost income. If users to do not pay di-
rectly, we still want to penalize the system for unavailability,
lest we end up with a design that disregards user needs. One
way is to assume that users will access an alternate system
(even if the content is not available elsewhere). We could, for
instance, assume that the alternate system is equivalent to
our AR. Thus, if it costs $500 per day to operate the AR, the
cost of unavailability will be $500. We could also consider
a commercially available alternate system. For instance, an
average search on Dialog (SciSearch database) costs $6, so if
we cannot satisfy say 1500 requests while doing preventive
maintenance, then the additional cost will be $9000.

Cost of losing a document: Even though our objec-

tive is to preserve all documents in the repository, in some
circumstances one can put a price on document loss. For
example, an organization may choose between archiving cer-
tain documents or recreating them. In this case, the cost of
losing the document would be the cost of recreating it. Of
course, there are cases when we cannot put a dollar value
on losing a document (e.g., the diary of a famous person),
so we can use an arbitrarily large cost.

3.2 A Taxonomy of Cost Events
In the previous section we studied cost sources. In this

section, we use those sources as building blocks for the most
common AR cost events. Cost events can be broken down
into the following categories.

AR creation: Starting an archival repository involves
a large number of expenses. Hardware and software need
to be bought, infrastructure needs to be put in place, new
personnel needs to be hired, and so on. For instance, the cre-
ation of an AR with 100 disks would involve a server (about
$5000), the disks ($500 per disk for a total of $50000), in-
stallation costs (one consultant at $1000), renting and fur-
nishing an office space ($800 for the realtor that finds the
place and $2000 for furniture and other necessary improve-
ments for the rented space), and loading of the documents
(five days of work supervised by a system administrator,
about $1200) for a total of about $60000. The AR creation
cost can be amortized over time. Amortization can done by
either charging a fraction of the startup cost over fixed peri-
ods of time (in which case it would be an operational cost)
or over each usage of the system (in which case it would be
a document access cost).

Document Access: When accessing a document, the
AR may incur acquisition costs or labor costs (e.g., the cost
of the operator who retrieves and mounts a tape).

AR operation: The total operational cost of the AR
would include the office space taken by the repository, the
necessary utilities (electricity, network, etc.), and the cost
of the people in charge of keeping the system running. For
example, in San Francisco, the average cost of office space is
$380 per square meter per year, so if we assume the repos-
itory occupies a small office of 8m2, the annual space cost
will be $3040 per year. Reasonable estimates for utilities
are $4000 for electricity and $3000 for network connectivity.
Finally a quarter-time system administrator and a 1/8th li-
brarian would cost about $20000 per year. This results in a
total operational cost of about $30000 per year.

Failure Detection: To enhance reliability, an AR needs
to periodically check for failed components (e.g., corrupted
tape). When performing failure detection, we should not
only take into account the cost of the detection itself (e.g.,
moving a tape from storage, mounting the tape on the reader,
checking the tape, and returning the tape to storage), but
also the cost of unavailability that it may generate. In Sec-
tion 5.4 we will see an specific example of how to compute
these costs.

Repairs: When the AR fails and needs to be repaired,
cost events may be generated (if we do not have a main-
tenance contract). For example, when a hard drive fails,
we may need to buy a new hard drive (about $500), remove
and install the new one ($100 for the time of the technician),
and restore the content of the failed drive into the new disk
($200 for the network cost and the unavailability caused by
the transfer).



Preventive Maintenance: Before a component fails, we
may want to transfer the information to a new component.
For example, if we know that tapes can survive 20 years, we
may decide to copy old tapes into new ones after 10 or 15
years. The cost associated with a preventive maintenance
event, includes the cost of the new media, the transfer of
the information, and the possible unavailability that this
task may create in the AR.

Upgrades: Upgrades are similar to preventive mainte-
nance, i.e., we transfer information from old components to
new ones. However, the motivation and the cost implica-
tions of an upgrade are different. We perform upgrades to
obtain some advantage from modern technology. These ad-
vantages may go beyond improved reliability (which is the
reason for preventive maintenance) and may include reduced
cost. For example, when upgrading to modern hard drives,
we may gain reduced operational costs (e.g., if they require
less administrator time, less power, or less physical space).
Therefore, after an upgrade, we need to reconsider all other
costs in the system and change the cost events appropriately.

4. AR RELIABILITY
The reliability of an AR gives the likelihood that the sys-

tem will work for a given period of time. Formally, the
reliability is the conditional probability that no “failures”
have happened in the time interval [0, t] given that the sys-
tem was operational at t = 0. There are many ways we can
define an AR failure. It could be the loss of a document, the
loss of a certain fraction of the collection, or even the loss of
some specific set of documents. In this paper we will take
the most stringent criteria: loss of any single document.

As with costs, we summarize the probability distributions
for time to failure by its mean. So, we use the mean time
to failure (MTTF) as representative indicator for the distri-
bution of the time to failure. For instance, an AR with a
MTTF of 100 years is expected to survive 100 years, i.e., if
we build say 10 identical ARs, and average the time when
each fails, we get about 100 years.

It is important to note that MTTFs can be used to com-
pare ARs, even if we expect their configuration to change
relatively soon. For instance, say we compare two ARs, A
and B, using a current hardware configuration, and find
that A’s MTTF is 50 years, while B’s is 200 years. One
may be tempted to think that because the current hardware
will be replaced in say 15 years, then the longer MTTFs are
meaningless. However, this reasoning is incorrect. System
B, with its longer MTTF, is significantly less likely to fail
during the first 15 years than A and is hence preferable. In
15 years, when we change the configuration of the AR, we
can re-evaluate its MTTF, and again decide what are the
best options based on the predicted MTTFs at that time.
In summary, MTTFs can be used to compare systems even
over short periods of time.

To estimate system reliability, we need to identify the un-
desired events, such as the failure of a disk or an operator
error, that may lead to a failure. A document is lost if
the bits that represent it are lost, and also if the necessary
components that give meaning to those bits are lost. An
undesired event does not necessarily cause information loss.
In fact, we have seen that if the AR keeps two copies of a
document, and the disk holding one of the copies fails, then
the document is not lost. It would take a second undesired
event affecting the second copy to cause information loss.

5. DESIGNING AN AR
Our goal is not simply to evaluate a given AR, but instead

to design an AR that meets our cost and reliability targets.
For instance, we need to decide how many document copies
to keep, what formats to store them in, how frequently to
check for errors, and so on, in order to attain some desired
reliability and maximum cost. To aid the design, we use a
framework based on Decision Analysis [10]. We show our
design framework in Figure 2. The framework is a cycle
where we first formulate our objectives. Then, we identify
the uncertainties (e.g., when a disk will fail). A large number
of uncertainties can make the system difficult to analyze, so
we next identify and eliminate the uncertainties that do not
have a critical influence on the overall performance of the
system. Then, we assess the probability distribution of the
uncertainties and predict the performance of the AR design.
Finally, we perform a sensitivity analysis to appraise our
design. If we find a problem with the recommended design
(for example, we discover that one of our initial assumptions
is incorrect), then we iterate over the cycle.

Alternative
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Probabilistic
Assesment

Formulation
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Figure 2: AR Design Cycle

To illustrate the design process, we will use a case study of
a Stanford-MIT technical reports AR. At each step, we will
discuss the assumptions or decisions made in this sample
design. We will also present simulation results for this case
study to show the types of conclusions that can be reached.

5.1 Framing the problem
The first is to clearly define the success criteria for the

design. Typically, the criteria will include the archival guar-
antees (MTTF) and the cost of the AR (MASC). Possible
goals can be: (i) Maximize the MTTF of an AR such that
the MASC is less than a given amount. (ii) Minimize the
MASC of an AR for a minimum MTTF. (iii) Maximize some
combination of the MTTF and MASC. In other words, we
want to transform the MTTF and MASC to a common met-
ric (let us say dollars) and maximize its combination. For
example, if documents can be recreated, the organization
may be able to assign a dollar value to losing a document as
we discussed in Section 3.1.

In our case study, the goal will be to have a repository
with a MTTF at least equivalent to that of standard paper
(100 years) with the minimum MASC possible. A failure is
defined as the loss of one or more documents.

When designing an AR, some decisions are taken before
starting the design process (policies), others are delayed un-
til the implementation of the system (tactics), while the rest
are the focus of the design (strategies). For example, in our
case study we assume that the AR will cover Stanford and



MIT technical reports (a policy) and that the decision on
the specific brand of the hard drives that the AR will use
can be defered until implementation time (a tactic). It is
important for the design team to agree on which decisions
are policies or tactics, as no time should be spent studying
them during the design process.

5.2 Identifying Uncertainties, Alternatives, and
Preferences

Uncertainties are probabilistic factors that affect the AR
(e.g., the time when the disk will fail). Despite their name,
we might actually have some control over an uncertainty.
For instance, even though we do not know when a disk will
fail, we may be able to choose between disk with different
MTTFs. When we control the value of an uncertainty com-
pletely, we will call it a variable. For example, if we assume
that disk prices will decrease exactly 5% per year (and we
know the current price), then the cost of a replacement disk
becomes a variable.

Alternatives are the different designs that we have avail-
able. For example, in our case study, we may consider:

• ARs with disks with MTTF of either 3, 5, 10, or 20
years.

• ARs with failure detection intervals of 30, 60, 120, or
720 days.

The combination of these different values results in 16
possible configurations that we need to evaluate.

5.3 Modeling an AR
An important decision is the level of granularity in the

model. If we have too little granularity, then we will have
complex uncertainties that are difficult to analyze. If we
have too much granularity, the number of variables will be
high, making the analysis of the model difficult and even
impossible. For example, in our case study we decide to
use disks, sites, and formats as the lowest level of detail (in
contrast to choosing documents, files, or even bits). Thus,
we only need to quantify how much money disks, sites, and
formats will cost and how will they affect MTTF. This is
much simpler than trying to find the MASC and MTTF of
the AR as a whole (not enough granularity), or the MASC
and MTTF of every single file (too much granularity).

To model and evaluate a particular AR configuration, we
propose an extension of the model presented in [4]. In partic-
ular, our extension adds cost events and their associated cost
distributions. Recall that our model of an AR has two major
elements: a non-fault-tolerance data store and an archival
system (AS) that ensures long-term survivability of the in-
formation. To model the store, we need to define:

• How many component instances and types are present
in the system: that is, how many disks, formats, etc.,
are available.

• Time distributions for component failures. Many com-
ponents have two different failure distributions, one
during archival and another during access. For ex-
ample, a tape is more likely to fail when it is being
manipulated and mounted on a reader than when it
is stored. Therefore, each component may have two
failure distributions: during archival and during ac-
cess. For some components, such as disks or sites, the
access and archival distributions will be the same.

• Time for performing a component check. This distri-
bution describes how long it takes to discover a failure
(or to determine that a component is good), from the
time the check process starts. For example, consider
checking a tape. This may involve getting the tape
from the shelf, mounting the tape, and scanning the
tape for errors.

• Time for repairing a component failure. This distri-
bution describes how long it takes to repair a compo-
nent. This distribution may be deterministic (if the
component can be repaired in a fixed amount of time).
Repair time may be “infinite” if the component cannot
be fixed.

In addition, there is an important interdependency be-
tween components. Specifically, the failure of one compo-
nent may cause the failure of another component. For ex-
ample, if a site fails (e.g., because it was destroyed by a
fire), then all the disks at the site will also fail. This failure
dependency is captured by a directed graph. For example,

• AR Description
– Initial collection: 200,000 documents. No

documents created after startup. Each
document, d, will have materializations:

∗ 〈d, MIT, diski〉,
∗ 〈d, MIT, diskk〉,
∗ 〈d, Stanford, diskx〉,
∗ 〈d, Stanford, disky〉.

Where MIT and Stanford are the two
sites; and diski, diskk, diskx, and disky

are different storage devices.
– Number of components and types: 100

storage devices in each site, 2 sites.
– Failure dependency graph: site → disk,

when the disk is in the given site.

• Policies
– Document Creation policy: for each docu-

ment, two materializations are created, one
in each site.

– Document to Materialization: read from
any materialization.

– Failure detection algorithm: complete scan
of all disk. Site failure detection is instan-
taneous.

– Damage Repair algorithm: discard bad
component and replace with new compo-
nent instantaneously.

– Failure prevention algorithm: none
– Upgrade policy: none

• Distributions (unknown for now)
– Disk Failure dist. during access (time)
– Disk Failure dist. during archival (time)
– Disk Failure Detection success dist. (prob-

ability)
– Disk Repair success dist. (probability)
– Disk Failure Detection interval dist(time)
– AR Creation Cost. (dollars)
– AR Operational cost dist. (dollars)
– Disk Failure Detection cost dist. (dollars)
– Disk Repair cost dist. (dollars)

Figure 3: Archival Repository Model Parameters



Variable low base high

Disk MTTF during access (years) 20 × 0.9 20 20 × 1.2
Disk MTTF during archival (years) 20 × 0.9 20 20 × 1.2
Success of a Failure Detection (probability) 1 1 1
Success of a Failure Repair (probability) 1 1 1
Failure Detection Interval (days) 120 × 1.5 120 120 × 0.9
AR Creation Cost (dollars) 55000 60000 70000
AR Operational Cost (dollars/year) 200 300 400
Failure Detection Cost (dollars/run) 1000 + 1200 ∗ 6 1200 + 1500 ∗ 6 1400 + 1800 ∗ 6
Repair Cost (per replaced disk) 450 + 100 + 164 500 + 100 + 204 600 + 100 + 244

Figure 4: Base values

an arrow between “Site A” and “Disk 1” in the interdepen-
dency graph means that if “Site A” fails, then “Disk 1” will
also fail.

To model the AS we need to define:

• Document Creation algorithms and their associated
cost distributions: When a new document is added to
the AR, the AS uses the document creation algorithm
to create enough materializations to ensure survivabil-
ity of the document. This action may create one or
more cost events, each with a different cost distribu-
tion.

• Document Access algorithms and their associated cost
distributions: how a document request is transformed
into requests for the appropriate components, and the
associated costs of that operation.

• Failure Detection algorithm and their associated cost
distributions: As explained earlier, the AS scans the
store looking for damaged or lost materializations. When
a damaged materialization is found, a damage repair
algorithm is started (as described below).

• Damage Repair algorithms and their associated cost
distributions: After a failure has been detected, the AS
attempts to repair damaged components. There are
many strategies to repair a damaged document that
are discussed in [4].

• Failure Prevention policies and their associated cost
distributions: The AS scans the store and takes pre-
ventive measures so materializations are less likely to
be damaged. For example, the AS may copy compo-
nents that are stored on a disk that is close to the end
of its expected life, into a newer disk.

• Upgrade algorithms and their associated cost distri-
butions: A technology upgrade may change the algo-
rithms used by the AS as well as the cost distributions.

Figure 3 summarizes the AR model for our case study.
The failure and cost distributions for the model and de-
scribed in the next subsections. Note that for simplicity the
model assumes no format or site failures. (Our methodology
can of course handle a more general model.)

5.4 Transforming Non-Critical Uncertainties
into Variables

We can simplify the AR analysis by considering as vari-
ables the uncertainties that have little impact on MTTF and

MASC. For example, if the distribution for disk prices in-
troduces little variation on the total cost, we might as well
replace it with its mean. Eliminating uncertainties can save
substantial analysis and simulation effort. We call uncer-
tainties that have a large impact on MTTF or MASC the
critical uncertainties. The remaining ones are called non-
critical uncertainties or, given that we are fixing them, just
variables. In this subsection we will see how can we identify
critical and non-critical uncertainties.

To determine the impact of an uncertainty, we need to
find its distribution. Obtaining an exact probability distri-
bution for each uncertainty may take a significant effort with
a limited payoff, so instead we approximate the distributions
by using just three values: low, base, and high which corre-
spond to the distribution 10, 50, and 90 percentile. Finding
the appropriate low, base, and high values for an uncer-
tainty is more an art than a science. Only experience and
a good understanding of the AR components allow one to
make these predictions.

After approximating the distributions of the uncertain-
ties, we assess their impact by using a Tornado Diagram.
A Tornado Diagram shows the system performance (MTTF
or MASC) for the low/base/high value of each uncertainty
(while keeping all other uncertainties at their base values).
An example of a tornado diagram can be found on Figure 5.
We will explain this diagram in detail later in this section,
but for now, we can see some uncertainties (such as the
Disk Failure) impact MTTF significantly while others (such
as Failure Detection Cost) have little or no impact.

Returning to our case study, let us consider the case where
disks have a MTTF of 20 years and we scan the repository
every 120 days. (In practice we would do a similar evalua-
tion for each of the other 15 alternatives discussed in Sec-
tion 5.2). First, we obtain a rough range for the values of the
variables. These ranges are shown in Figure 4. The choice of
these values is highly subjective, but, nevertheless, we will
attempt to describe the rationale that an expert may have
followed to reach these values.

Disk failure during access and archival: For these two un-
certainties, we choose to have the same distributions, since
disks do not fail significantly more when accessed. We use
as base value the MTTF advertised by the manufacturer (20
years). We assume that there is little variation in MTTF, so
we will assign a low value of 90% of the advertised MTTF
and a high value of 120% of the advertised MTTF.

Success of failure detection and a repair: For these two
uncertainties, we assume that the probability of success is
1. In other words, we are assuming that there are no hidden
failures (i.e., if a disk is defective, we can always tell) and
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that all repairs are successful (i.e., we can always replace a
defective disk with a working one). Note that the later does
not mean that we can always repair a document. It just
means that we are always able to install a new disk and to
copy the content of the failed disk from alternative sources
if it is available.

Failure Detection Interval: This uncertainty shows that
the assignment of low, base, and high valued need not be
symmetrical. For instance, we assigned a low value of 1.5
times the targeted mean time to detection (120 days), while
we assigned a high value of 0.9 times the detection time. In
other words, it is more likely that detection will be slower
rather than faster.

AR Creation Cost: Using the rationale presented in Sec-
tion 3.2, we will estimate the initial AR cost to be $60000.
To allow for error, we will choose a low value of $55000 and
a high value of $70000. We will assume that this will be a
one-time cost (i.e., no amortization will be done over time).

Operational Cost of a Disk: As illustrated in Section 3.2,
we use a total operational cost of about $30000 per year
with a low value of $20000 and a high value of $40000 per
year to allow for errors. This total operational cost divided
by the number of disks (100 per site) results in a operational
cost per disk of $200 to $400.

Cost of the Disk Failure Detection Algorithm: This is
probably the hardest uncertainty to estimate. We divide
the cost of the detection algorithm in two components. The
first component represents the direct cost of running the al-
gorithm, while the second component reflect the cost of ser-
vice unavailability. The direct cost of the failure detection
algorithm includes the time required by the System Admin-
istrator to start the scan and correct any problems with the
scan (assuming these tasks are not included in the adminis-
trator’s salary already). If we assume that failure detection
involves 5 days of part-time work, the cost will be about
$1200 per run (see Section 3.2).

To estimate the unavailability cost, we will assume that
users will use an alternate commercial service. Using the
costs of Section 3.2 for 1500 missed user requests, we price
unavailability at $9000. Therefore, the total cost of running
the failure detection algorithm is about $10200. To allow for
error, we will choose a low value of $8200 and a high value
of $12200 per run.

Cost of the Disk Repair: The repair cost is equal to the
cost of adding a new disk ($450 to $600) plus the cost of re-
moving the disk ($100) and a fixed amount for the resources
involved in copying the data from the alternate sources onto

the new disk (equal to twice the cost of running the detec-
tion algorithm on a single disk, this is, for the base cost,
$10200/100 ∗ 2 or $204).

We are now ready to generate the Tornado Diagrams. We
use ArchSim/C to simulate the performance of the system.
At this stage, we do not want to run the full fledged simu-
lations (which may take a significant amount of time). In-
stead, we run fast simulations with broad confidence inter-
vals (requiring fewer repetitions) and considering all uncer-
tainties, except disk failures, to be deterministically fixed at
their base values. Fixing the value of the variables speeds up
the simulation as we do not need to compute a random value
for each event and allows us to group events. For instance,
instead of generating a random value for each repair cost, we
just count the number of repairs that were performed during
the simulation and multiply by the fixed cost of making a
repair. We treat disk failures differently because determin-
istic failure times would cause all disks to fail at the same
time (and all data would be lost).

To generate the Tornado Diagrams, we evaluate the AR
reliability and cost for the proposed design with all the vari-
ables at their base values. Then, we modify each variable
independently (while keeping all others at their base value)
to its high and low value and evaluate performance again.
Each tornado diagram summarizes 1 + 2 × variables simu-
lations (one simulation for the base case and two for each
variable). In our case, this results in a total of 13 simulation
per tornado diagram. We show the result of our simulations
in Figure 5. We can see that most of the MTTF variation
(95.7%) comes from the disk MTTF variation. Therefore,
with respect to this metric, we can safely assume that the
other uncertainties are noncritical and can be fixed at their
base values.

Figure 6 shows the equivalent diagram for costs. In this
case, 94% of the cost variation is produced by the oper-
ational cost of the disks. Therefore, with respect to this
metric, we can safely assume that the other uncertainties
are non critical and can be fixed at their base values.

In conclusion, we only need to consider disk failures and
disk operational costs as critical uncertainties, for the case
of a design with disks having a MTTF of 20 years and failure
detection interval of 120 days. To complete the analysis, we
need to repeat the process with the other 15 configurations.
Although we do not show the results for the other cases, the
conclusion is the same: only disk MTTF and cost are criti-
cal. (In general, the conclusions could vary from scenario to
scenario, but this does not occur in our case study.)
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Figure 7: MTTF for base values
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Figure 8: MASC for Base Values

5.5 Eliminating Futile Alternatives
Let us turn our attention to the available alternatives. For

that purpose, we used ArchSim/C again to run fast simu-
lations. The results are in the graphs of Figure 7 and 8.
From the graphs, we can see that a detection interval of 720
days never achieves our required minimum of a MTTF of
100 years (it barely achieves it for a disks with MTTF of 20
years, but the 90% confidence interval includes values below
100 years). Similarly, disks with MTTF of 3 years also never
achieve our required minimum MTTF. Note that these re-
sults are based on fast simulation where all uncertainties,
except the MTTF of disks, are fixed. If we are very aggres-
sive and eliminate too many alternatives, we might eliminate
the alternative that may happen to be the best when run-
ning the full simulation. On the other hand, by eliminating
some alternatives, the time to run the full-fledged simula-
tions later is reduced. For this case study, we not consider
further disks with a MTTF of 3 years or detection time of
720 days. If we were more aggressive, we could have also
eliminated disks with MTTF of 5 years (except when the
detection interval is 30 days).

Regarding MASCs, the preliminary analysis shows a sur-
prising result. The MASC of an AR with costly, but more
reliable, disks ends up lower than that of an AR with the
cheap, less reliable, disks. This is because of the cost of
buying a new disk (when the cheap disk fails) and transfer-
ring the information to it. Therefore, we drop disks with a
MTTF of 3 years, and detection intervals of 720 days, and
reduce our alternatives from the original 16 to just 9.

5.6 Probabilistic Assessment of Uncertainties
For our final analysis we may need to assess the probabil-

ity distributions of uncertainties more precisely. In practice,
we will rely on experts to produce these distributions. Tech-
niques for probability distribution elicitation are described
in [12].

To illustrate, in our case study, we model disk failures
with an “infant mortality” distribution. This kind of distri-
bution, typical for electronic devices, has two phases. First,
when most manufacturing defects will cause a failure, the
probability of failure is high, but drops sharply over time.
In the second phase, the probability of failure is constant. To
model this distribution we use three parameters: time span
for the first phase, percentage of devices failing in the first
phase, and the probability of failure in the second phase.
For our disks, we use a distribution where 10% of the disks
fail within the first 30 days (i.e., an exponential distribution

with mean 285 days) and, after that disks fail following an
exponential distribution with mean 20 years.

To model the operational cost of disks, we assume that the
library will sign one-year maintenance contracts. Although
the price is fixed for one year, from year to year, the price
specified in the contract may change due to market condi-
tions. We will use an uniform distribution between $200
and $400 per disk to capture those market fluctuations. Us-
ing these more complex distributions makes our predictions
more accurate, but also makes evaluation much harder. For-
tunately, ArchSim/C can handle such general distributions.

5.7 Evaluating an AR Design
ArchSim/C receives as input an AR model (including costs),

a stop condition (e.g., stop when the first document), a sim-
ulation time unit (minutes, hours, days, etc.), and the num-
ber of repetitions. ArchSim/C outputs the mean time to
failure (mean time to stop condition), a cost metric, and a
confidence interval for both the MTTF and the MASC.

ArchSim/C follows the structure of a traditional simula-
tion tool. Each component of the AR model registers future
events in a timeline. For example, when a disk is created,
the simulation uses the disk failure distribution to compute
when the disk will fail; then, it registers the future failure
event in the timeline. The simulation engine advances time
by calling the module that registered the first event. This
module may change the state of the repository and register
more events in the timeline. Additionally, the module may
contact the Cost Manager and record some cost involved
with its operation. After the module returns, the simula-
tion engine checks for the stop condition and, if it has not
happened, it advances to the next event, in chronological
order. If the stop condition has occurred, the simulation
stops and records the point on the timeline when this hap-
pened and the total cost incurred up to that time. The
engine keeps re-running the simulation until the number of
repetitions requested by the user is reached. At that mo-
ment, ArchSim/C computes the MTTF and the MASC by
averaging the recorded time to failure and costs at the end
of each repetition. ArchSim/C also compute the confidence
interval for those values. Further details on ArchSim/C, in-
cluding techniques and features that speed up significantly
the simulation can be found in [4].

In the previous sections we concluded that the most promis-
ing alternatives were the ones with disks with a MTTF of 5
to 20 years and a detection/repair interval of 30 to 120 days.
We also concluded that we would consider the MTTF of the
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Figure 9: MTTF Evaluation
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Figure 10: Cost Evaluation
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disks and the yearly operational cost of the disks as critical
uncertainties and the rest, as variables. Using this setup,
we use ArchSim/C to fully simulate the AR and obtain its
reliability and cost.

In Figure 9 we see the MTTF of the AR for different
configurations. From the figure, we conclude that we need
disks with a MTTF of either 10 or 20 years and detection
intervals of 30 to 120 days to achieve our target MTTF of
100 years.

In Figure 10 we see that the least expensive alternative
is the one with a detection interval of 120 days. Consis-
tently with the preliminary simulation, here again the cost
decreases when using more reliable disks. Therefore, the
best alternative is one that uses disks with MTTF of 20
years and has a detection interval of 120 days. Such an AR
will have a MASC of $7,822 and a MTTF of 364 years. Note
the critical role that costs played in reaching this decision:
if we had ignored costs we could have easily selected a de-
sign that achieves the desired MTTF but in a much more
expensive way!

5.8 Appraising Cost Decisions
In this final phase, we revisit our assumptions by running

sensitivity analysis of the critical and non-critical uncertain-
ties. We again illustrate the process via our case study. Re-
call that our proposed design was an AR with disk with a
MTTF of 20 years and a detection interval of 120 days. Us-
ing ArchSim/C we ran sensitivity analyses for all uncertain-
ties, but due to space limitations, we only present the results
for two: the Detection Interval (a critical uncertainty) and
the cost of detecting failures (a non critical uncertainty).

In Figure 11 we perform a sensitivity analysis for the de-

tection interval. We want to find out the impact of a small
change in the suggested 120-day interval. In the figure, we
can see that the smaller the detection interval, the higher
the MTTF of the AR. In particular, an AR with a detection
interval of 240 days will have a MTTF of 184 years. So, we
can double the value of the detection interval and we still
achieve the target archival guarantees. If doubling the value
of the detection interval had caused an important decrease
in cost, then we would need to reassess our recommendation.

In Figure 12 we see the AR cost for different detection
intervals. As expected, larger detection intervals decrease
costs. For instance, increasing the interval to 240 days,
causes a reduction of cost of $400 or about 6%. We now
have to decide if it is worth considering new alternatives
given a potential saving of $400. If this is the case, we
should return to the formulation phase and add alternatives
with detection intervals in the 120 to 720 days range. No-
tice that we cannot make a new recommendation based only
on the sensitivity analysis, because the variable we want to
change may interact in unexpected ways with the reliability
and cost metrics. Concretely, in this case, the cost associ-
ated with the detection interval might not be a continuous
function, so we may need to revisit our cost estimates and
re-run the simulations.

Let us turn now our attention to the sensitivity analysis
of the cost of detecting failures. This variable has a differ-
ent nature than the detection interval, as it does not affect
the MTTF of the AR. Additionally, we may not be able to
change the value of this variable (e.g., the cost of detect-
ing failures may be determined by the market). Therefore,
a sensitivity analysis here rather than validating or invali-
dating our proposal, gives us an idea of how much the cost



of the AR may increase (or decrease) if our estimate of the
value of this variable was erroneous.

Figure 13 shows the AR cost for different detection costs.
As expected, the figure shows higher costs when the detec-
tion cost increases. The important observation here is that
costs are increasing almost linearly with a very small slope.
An increase of 100% in the detection cost (from 200 to 400),
only results in an increase of 33% in the AR cost. This
means that a small error in the estimate of the detection
cost will not affect the AR much. Unfortunately, it also
means that efforts in reducing the detection cost will have
small payoffs.

6. CONCLUSIONS
In this paper we have studied how to make cost-driven de-

cisions about archival repositories. We presented a frame-
work that improves the efficiency and effectiveness of the
AR design process. We described a powerful simulation
tool, ArchSim/C, for evaluating the reliability and cost of
ARs and the available archival strategies. We described how
ArchSim/C can efficiently perform large simulations involv-
ing many components and very long simulated periods. We
believe our design framework and ArchSim/C can help li-
brarians and computer scientists make rational and econom-
ical decisions about preservation, and help achieve better
archival repositories.
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