Implementing a Reliable Digital Object Archive

Brian Cooper, Arturo Crespo and Hector Garcia-Molina
Department of Computer Science
Stanford University
{cooper b, cr espo, hect or }@B. St anf ord. EDU

ABSTRACT

An Archival Repository reliably storesdigita objectsforlong
periods of time (decades or centuries). The archival nature
of the system requires new techniques for storing, indexing,
and replicating digital objects. In this paper we discuss the
specialized indexing needs of awrite-once archive. We also
present ardiability algorithmfor effectively replicating sets
of related objects. We describe an administrative user inter-
faceand adataimport utility for archival repositories. Finally,
we discuss and eva uate a prototyperepository we have built,
the Stanford Archival Vault, SAV.

KEYWORDS: archival storage, digital objects, object repli-
cation, object indexing, user interface, archiva repository

1 INTRODUCTION

Information stored and managed by today’s digita libraries
can belost withinyears or decadesif specia careisnot taken.
The causes include media and system failures, format obso-
lescence and bankruptcy of publishers. At Stanford we have
implemented a prototype archiva repository, the Stanford
Archival Vault (SAV, pronounced “save”), for the long term
preservation of digital objects. These objects may include
documents, their metadata, and the programsfor interpreting
formats. Our repository does not entirely solve the preserva-
tion problem, but we believeit providesan extremely reliable
storage infrastructure for preserving digital objects, even as
hardware, software, and organi zations evolve.

Aswe implemented and tested our SAV prototype, we iden-
tified some unexpected, important challenges that led us to
modify our initial design, and to develop some new storage
and replication techniques. We believe that the encountered
challenges were not uniqueto our system, but represent some
fundamental problemsthat will be faced in the design of any
type of digita library preservation system.

For exampl e, the nature of an archival repository impliesthat
objects should be preserved and not erased. As a result,
a repository should not allow users to arbitrarily delete or

overwrite digital objects. This write-once policy, which is
not present in conventional data stores, forces us to manage
data differently. For instance, consider a “set” object that
contains pointers to the different materiaizations of a given
document (e.g., the postscript version, the plain text version).
The usua way of updating this set isto write a new pointer
into the set object, or to delete a pointer from the object. Be-
cause the write-once policy forbids such changes, managing
collections of objects using sets requires new storage struc-
tures. Furthermore, these new structures require specifically
tailored indexes that can speed up common accesses to digital
library sets.

A second area where we faced unexpected challenges wasin
the configuration of replication “agreements” Any archival
repository must backup its digital objectsto remote systems,
and hence must enter into some type of agreement with the
remote system regarding what objects to replicate. Agree-
ments need to be flexible so that different arrangements can
be described, e.g., a library L, may wish to backup al its
technical reports (TRS) at library L+, but in addition Physics
TRsshould be backed up at Ls. Library L, may inturnwish
toreplicate some of the TRsfrom L, at another site .4, while
simultaneoudly replicating some of its materials back at 7.
At the sametime, itisimportant that new documents be auto-
matically and fully incorporated into the proper agreements,
without humanintervention. For instance, supposethat anew
Physics TR is crested, consisting of two materidizations, a
postscript object, and a plain text object. As soon as the
“root” digital object for thisTR (e.g., the onethat linkstoits
components) is added to the set of Physics TRs, all the com-
ponents should be implicitly added to the proper agreements
and automatically backed up at L, and L3. Achieving this
flexibility and automation required new concepts of replica-
tion sets and annotated links, concepts that will be useful in
any archival repository.

In this paper we discuss the challengesinimplementing SAV
and thelessonswe learned. We describe the mechanisms that
were devel oped and that could be used in any archiva repos-
itory. Specifically, we make the following contributions:

o Weidentify themost useful indexesfor awrite-oncearchival
repository.

e We present a reliability algorithm that replicates digita
objects, and detects and corrects corruptionin these objects.

¢ We introduce the concept of a replication set for the auto-
matic replication of digital objects.

o Wedefinethe concept of annotated linksthat restrict traver-
sals over agraph, for the purpose of conveniently specifying
replication sets.

o We describe an administrative user interface that provides
access to objectsin arepository, with low system overhead.
¢ We introduce the InfoMonitor, an implemented software
package for migrating real-world data (e.g., from aweb site)
into arepository.

o We present experimental performance resultsfor SAV that
illustrate the costs and efficiencies of some of the techniques
we describe,

The rest of this paper is organized as follows. First, we
present ageneral model for anarchiva repository in Section 2.
Then, in Section 3 we describe the object storage component
of the system. Section 4 discusses the reiability layer, and
Section 5 examines the user interface. Section 6 presentsthe
InfoMonitor, while Section 7 discusses related work.

2 COMPONENTS OF AN ARCHIVAL REPOSITORY

Figure 1 shows the architecture of a prototypical archival
repository. Our implemented SAV followsthis basic design.
However, here we address the general principlesand features
that would form the basis of any archival repository. (For ad-
ditiona details on the specific SAV architecture, refer to[8]).

The architecture in Figure 1 shows six distinct components
of the system. The first component is the object store. This
component stores and indexes digital objects so that they
can be efficiently retrieved by other modules. In addition,
the object store manages the assignment of object handles
(Section 2.1), indexing, and caching of digital objects. The
object store can be built on top of an existing storage system,
such as afile system or DBMS.

Applications and
Data |mport/Export User Interface
(e.g. InfoMonitor)
Upper Layers
(e.g. Security)
isbili Trusted
Reliability Layer Remote Sites

Object Store

Figure 1: Architecture of the Archival Repository.

Thelongterm archiving function of therepository isprovided
by thereliability layer, which manages object replication and
corruption detection. Thislayer relies on different repository
sites, usually geographically dispersed, to store copies of the
objects. The reliability components at the various sites col-

laborate in detecting missing or corrupted information, and
restoring it. We assume that remote reliability components
are trusted. Communications among trusted reliability com-
ponents can be encrypted and authenticated using standard
techniques. Therdliability layer can be configured in various
ways(e.g., number of sitesinvol ved, number of copiesneeded
for each object) to achieve different levels of rdiability and
system cost; the determination of appropriate configuration
parameters isinvestigated in [9].

Upper layersontop of thereliability layer provide additional
functionality, such asuser security, intellectual property man-
agement, and query processing. The upper layers provide a
programming interface (API), and appropriate information
models, so that various “applications’ can access the repos-
itory. One such application is a user interface component
that allows users to view the contents of the repository and
perform operationsonit. Another important applicationisan
import/export utility that provides batch migration of objects
into and out of the repository, from digita libraries that do
not providethe high religbility of the archival repository.

In this paper we focus on the lower system layers (object
store and reliability), which are the ones that have been im-
plemented in our initiad SAV prototype. However, we do
cover two important applicationsthat must deal directly with
thelower layers. Oneisauser interfacefor the system admin-
istrator (Section 5) that allows him to view the digital objects
in the repository, create new objects, group semantically re-
lated items together, and construct agreements to replicate
objects. A second applicationisthe InfoMonitor (Section 6),
which migrates information from a standard file system or
web siteinto the repository.

2.1 Digital objects

We suggest that a stored digital object be given an object han-
dle, and consist of alist of fields (which are name/valuepairs).
Thismode has the advantage of being both simple and pow-
erful enough to store most types of information. An object
handle is used by the system to efficiently locate an object.
Handles are seldom seen by users. Users see human-readable
names that are mapped by the system to one or more handles.
For example, a user requesting the “postscript” version of
“Tech Report #512" may be given access to the object with
handle “62975." Our SAV system generates object handles
by computing a signature of the object’s contents. However,
other mechanisms for assigning handles are possible. The
work we describe in this paper is equaly applicable to any
handle protocol.

The name/value pairs are defined by the creator of the object,
who generates as many fieldsas necessary. These fields store
content data, metadata, or any other useful values. More-
over, by storing another object’s handle as the value of a
field, an object creator can construct a relationship between
objects. Such a reference field represents a “link” between
two objects. To illustrate, a technica report object could

include fields with names AUTHORS, TI TLE, CONTENT,
PREVI QUS, HANDLE, and CHECK. Field PREVI QUS could
contain an object reference to the previous version of the
technical report. Inthisway, achain of report versions could
be represented in the archive. Other data structures that may
be useful are described in [8].

Two fields are required in al objects. Field HANDLE is a
required reference field containing the handle of the object
itself, while CHECK is an error detection code (e.g., CRC)
computed over all remaining fields. These two fieldsmake it
possible to verify that a given object is not corrupted and is
indeed the object one believesit to be.

2.2 AR Properties

In order to protect digital objects against 10ss over time, in
genera anarchival repository must enforce certain properties.
The no deletions policy specifies that users should not have
the capability to delete objects once they are archived. A user
can “take out of circulation” an object by changing its access
rights, but thisisdifferent from physically erasing it fromthe
repository. Allowing usersto delete objectsisdangerousinan
archival system. Intentional deletions introduce ambiguous
situationswhereit isnot clear if amissing object was del eted
by auser (and should not berestored) or lost dueto some error
(and should be restored). With no intentional deletions, the
reliability layer simply restores any missing objects, leading
to much better long term reliability.

Similarly, the no modifications policy prevents users from
changing archived data. Modification are instead handled
by creating version chains, with a newer object pointing to
an older object via an object reference. No modifications
again eliminates ambiguous states where it is unclear which
isthe “right” instance of areplicated object to restore. With
version chains, any lost or corrupted version is restored to
its original state. The no deletions and no modifications
properties together define a write-once archive, where data,
once written, is never erased.

The third property is universal handles. This property guar-
antees that an object retains its handle regardless of which
repositoriesit is replicated to, and that the handle is unique
within therepository network. Thus, ahandleunambiguously
identifies a single object. Without this property, the system
would have to explicitly record what objects are copies of
which, greatly increasing the chances of errors. Moreover,
with universal handles, object references can be unambigu-
oudly resolved, allowing the structure of a graph of objectsto
beretained even asthe objectsarereplicated to different sites.
Universal handles also has important efficiency benefits; for
example, two sites can quickly determine whether they have
the same objects simply by comparing lists of handles.

3 OBJECT STORE
The write-once policy forces us to represent related objects
in away that isuniqueto archival repositories. Toillustrate,

| oo | [o2 | [o3 |

Figure 2: Structure of set {O1, 02, 03}

Figure2 showshow a“set” can berepresented. (Thisset may
represent a collection of technica reports, the set of material-
izations of onereport, the set of replication agreements at one
Site (see Section 4), and so on.) The set isinitially created
by generating a“set anchor” A4; object. An object like O is
added to the set by creating a “set member” (represented by
M, inthefigure) which is an intermediate object pointing to
both A; and O,. A member O- could be deleted (not shown
in the figure) by adding a “remove set member object” that
linksto A; and M,. All changes are recorded by adding
objects rather than by modifying objects.

The problem is that write-once structures are difficult to tra-
verse. For instance, in order to find all of the membersof A,
it is necessary to scan al repository objects, looking for set
member objects (e.g. M;) that pointto A;. These set mem-
ber objects would then pointtothe A; members. Clearly this
traversal is very expensive, so we need auxiliary indexes to
help us locate objects of interest. The most useful indexes
for an archival repository are described in Subsection 3.1. In-
dexes need to be modified, so they cannot be stored as digital
objects, and do not enjoy the high reliability of digital ob-
jects. Subsection 3.2 discusses specia mechanismsto ensure
the correctness of indexes.

3.1 Indexing digital objects

A firgt critical index is the handle index that maps handles
to the site-specific identifier (e.g., file name) that locates the
object. Thisindex isbest implemented as a hash table, with
universal handles as keys. Thisindex, like the others we de-
scribe, isincrementally maintained. That is, as new objects
are created, the index is notified so the appropriate handle-
identifier pair is added. The handle index makes universal
handles feasible. Without site-specific information in a han-
dle, and without a handle index, one would be forced to find
an object O, by scanning al repository objects looking for
onewithfield HANDLE = O;.

Another important index is the pointer index that gives the
handles of al objects that link to a given object O;. For
example, for A; in Figure 2, the pointer index can quickly
give usthe handlesfor A, , M, and M3, from which we can
findthemembersof set A;. Notethaninatraditiona systema
pointer index may beunnecessary if all referencesare” doubly
linked.” However, in an archival repository, A; cannot point
to M; (whichwascreated after A,). Hence, apointerindexis
essential. Again, apointer index isbest implemented as hash

table. For convenience, the pointer index can be extended to
list the outgoing linksfor each object. Thismakesit possible
to traverse the repository’ sgraph structure without retrieving
the objects themselves.

To make a pointer index feasible, stored fields (Section 2.1)
that contain references must be tagged as such. This allows
the system to scan repository objects, extract references and
build the index. The creator of an object must tag handle
fields, either by indicating they are of “handle type” or by
using field names that the system recognizes as containing
handles (e.g., PREVI QUS in our earlier example).

Thethird type of index is an object structure index, designed
to record the members of a particular object structure, eg.,
a set or aversion chain. For example, if we look up 4; of
Figure 2 in a set index, we would directly obtain the handles
for Oy, O, and Os. Thissame information could be obtained
from the pointer index, but at a greater cost. (With a pointer
index we would have to examine all objectsthat pointto A4,
look for the set member objects, and then follow their linksto
the members.) Moreover, the set index can also giveusalist
of dl setsin use, and (if properly inverted) the sets a given
member participatesin.

3.2 Maintaining index consistency

Indexes are important for the operation of the repository, yet
they are inherently not as reliable as digita objects. First,
it does not make sense to replicate indexes across sites to
achieve reliability. (Indexes contain site specific information
that isnot useful at the remote sites, and since indexes change
often, updating the remote copies would be too expensive).
Second, since indexes are updated in place, they are much
more proneto software errors than write-oncedigital objects.

There are two steps to ensure that index errors do not cor-
rupt the underlying digital objects. Thefirst step isto make
indexes disposable. This means that no information that is
critical for the long-term survival of the repository should be
placed in an index. In other words, it should be possible to
at any time throw away all indexes and reconstruct correct
indexes from the underlying digita objects. As a corollary,
all index information must be considered a hint only. For ex-
ample, if apointer index tellsus that object O, pointsto O-,
we must verify this (by looking at the actual objects) before
performing a critical operation based on thisinformation.

With disposableindexes, acorrupted index will not adversely
affect the digital objects, but can still be very inconvenient.
For example, consider a set A, representing the three avail-
able recordings for a given song (e.g., MP3, wav, midi). If
the index is corrupted, the index may tell us that only two
recordings are available, or may give usarecording for adif-
ferent song! A user query could check and ignore the bogus
recording, but itwill not easily discover that thereisamissing
recording. The information is not lost, since the recording
objects are still in the repository, and are till linked to As.

Yet, to avoid inconveniencing the user, it is very important
to make every effort to ensure that the indexes are consistent
with the uncorrupted digita objects.

There are two ways to ensure this consistency of indexes:

¢ Rebuild from scratch: Periodically discard an index, and
completely rebuild it from the objects in the archive. The
rebuild procedure is aso useful when objects are added in
bulk through a dataimport utility (see Figure 1).

e Check and repair: An index is checked and fixed incre-
mentally.

Toillustrateacheck and repair process, consider checking the
handle index. The object store iterates through each of the
handlesin theindex, and loadsthe corresponding object from
disk. Each object is then be examined to ensure that indeed
itsHANDL E iswhat the index reports. If not, the“bad” index
entry referring to that object is deleted, and a new, correct
index entry is added.

Note that index rebuilding easily discovers objects that are
completely missing from the index, while a check and repair
task can only verify existing entries in the index. On the
other hand, check and repair alowstheindex to be available
continuoudly, while the index created by the rebuild task is
not available until the rebuild is compl ete.

In our implemented SAV system, indexes are kept in main
memory, so they need to be rebuilt from scratch at system
startup. They are aso rebuilt at the prompting of a user, or
at predefined intervals. A check and repair mechanism could
be added in the future.

3.3 Performance measurements

To evaluatethe overhead of managing and rebuildingindexes,
we conducted experiments on our SAV prototype, running on
an IBM Intdlistation (450 MHz Pentium |1, 256 MB RAM,
512 MB swap). The SAV itsdf isimplemented in Java 2,
and uses VisiBroker 3.4 CORBA to communicate between
repository sites. Digital objects representing real documents
from the Stanford Database Group’s web site were stored in
the archive. Six object sets of different sizes were tested in
order to assess scalability. The smallest set contained over
300 objects and dmost 5 MB of total data, while the largest
contained over 30,000 objects and 600 MB of tota data. In
each set, the average object size was 18 KB. The results are
shown in Figure 3. The solid linein the figure represents the
total time required to import (in bulk), write and fully index
al of the objectsin the archive. The dotted linein Figure 3
indicates the time to rebuild al of the indexes for existing
objects. Both tasks scale linearly with increasing number of
digital objects. The object storerequiresan incremental writ-
ing and indexing time of 150 milliseconds per object or 8.5
seconds per megabyte. Theindex building operation requires
an average of 19 milliseconds per object or 1.1 seconds per
megabyte. It takes about 10.5 minutesto rebuild the indexes
for the full 600 MB repository.

w1 ey

Nats ba ivjerlanp | iesjaiges]

Figure 3: Performance of the object store.

Of coursg, itisvery goodthat costssca elinearly, but they may
till besignificant for largearchives. Onesolutionistorebuild
each type of index at a different time. Another solution is
to partition a repository into smaller sets that are reindexed
at separate times. Thiswould spread out the rebuilding over
time. If thisscheme is used, there must be some mechanism
to deal with object references that cross partitions, perhaps
by querying the indexes for both partitions simultaneously.

4 RELIABILITY LAYER

Asdescribedin Section 1, thereplication layer backupsup ob-
jects remotely, detects lost or corrupted objects, and restores
them to their pristine state when necessary. The challenge
isto develop flexible mechanisms for determining what sites
participate in replication agreements, and what objects are
backed up where. In addition, we need efficient mechanisms
for checking and restoring information. In this section we
describe the techniques and a gorithms that were developed
as the SAV prototype was implemented, but that we believe
arewd | suited for any archiva repository.

The example shown in Figure4aillustratesthe basic replica-
tion steps we follow. The replication process begins when a
replication agreement R, is crested at one of the three sites
(Stanford in the example). Object 12 identifies the sites that
participate (Stanford, MIT, Berkeley) and the objectsthat are
to be replicated. For now, let us assume that R; simply con-
tains pointersto the objectsto replicate, O, and O,. Objects
Ry, O and O5 initidly exist only at Stanford, so Stanford
conducts the first site check. The Stanford site contacts the
MIT siteand discoversthat MIT does not yet know about the
agreement, so that al three objects are replicated to MIT.!
Similarly, all three objectsare copied to Berkeley (Figure4b).

Each of the three sites then begins a cycle of repeated site
checks, connecting to the other two sitesand comparing snap-
shots. Aslong asthereare no errors, the snapshotswill agree.
However, consider the situation where O, islost at Stanford

1 Asdescribed earlier, thereliability layers at each site trust each other, so
they willingly take each others’ agreements and objects. Clearly, before R4
was created, Stanford checked with the other sites to seeif there wasenough
storage capacity, or to arrange for payment for the service.

Stanford MIT Stanford MIT

Berkeley Berkeley
@ (b)

Figure 4: A replication network

due to adisk failure. The next site to perform a site check,
will notice that O, is missing, so O, will be copied back to
the Stanford site.

4.1 Replication networks

Our example illustrates a strongly connected replication net-
work. Each of the sites holding a copy of R; knows about
the other sites, and each site contacts every other site during
the site check. If there are N sites in the network, each site
check must contact N — 1 sites. Thisstructureisrecorded in
Ry by including a complete list of the sitesin the agreement.

Other structures are possible, asillustrated in Figure 5. In a
weakly connected network, each site is connected to some,
but not al, of the other sites. The topography of the structure
could be acycle, as shown in thefigure, or another structure,
such as atree. The strongly connected network has the ad-
vantage that each site check connects with every site, which
means that new objects are quickly replicated to al sites. In
contrast, the weakly connected network alows each site to
connect to afixed number of remotesites (twointheexample)
even asthenumber of sites V in the network grows. Because
fewer sites are contacted, site checks take less time and so
they can be performed more frequently. This decreases the
interval between the occurrence of afailureand the detection
and correction of the error.

Srongly connected Weakly connected

Figure 5: Different kinds of replication networks.

In aweakly connected network, links between sites are actu-
ally separate replication agreements, listing only the sitesfor
that link. In order to construct weakly connected replication
networks, it is therefore necessary for different agreements
a the same site to include the same digital objects. This

capability is one of the features of the snapshot construction
algorithm described in the next section.

4.2 Constructing snapshots of the replication set

In Figure 4a we suggested that agreement £, point to the
“covered” objects O; and O,. This is clearly not a good
ideasince we could never add more objectsto the agreement.
(Digital object R; cannot be modified.) An aternative is
to treat the agreement object as a set anchor, so that any
object connected viaa “set member” object is covered. For
example, in Figure 6, R, would cover O, and Os. (In this
figure, pleaseignore for now the different types of pointers.)
Thisisstill not flexible enough, since new objectswould have
to be explicitly linked to R».

Figure 6: Example replication sets.

Our solution is to recursively define the covered objects in
terms of the link structure of the repository. To illustrate,
suppose we wish to cover al versions of atechnical report
under agreement R; in Figure 6. The different versions
of the report, V1, V2 ... V), are related using a version
chain, in which version V; points to the previous version
Vi_1. Initialy, the first version V; is added to R; (through
My). When V5 iscreated, it need not be explicitly added to
R;. Our replication algorithm will implicitly include V2 in
R, because thereisapath toit from R, (viaM; and 14). As
more versions are created, they are also implicitly included.
Thus, thereplication set of 12 includesall objectsrecursively
reachable from R; (“backwards’ links count).

Thereisaproblemwiththissimpledescription of areplication
set. Toillustrate, consider agreements R, and R, inFigure®6.
Their replication sets are connected by O-, so if we blindly
include everything that is linked to R; in itsreplication set,
wewouldinclude al of R;'sset! Even if agreements do not
overlap, other objects may act as bridges and connect them.
For instance, in Figure 6, object 77 is such a bridge object.
(Object 17 may belinking objectswritten by the same author,
for example.)

Our solution is to annotate repository links to indicate when
they should be traversed in building replication sets. Some
links, like the ones out of 77 in Figure 6, should never be
traversed. Links such as these have nothing to do with repli-
cation, and are shown as dotted lines in the figure. Other
linkslikethe ones between A, and O, and between M3 and

0O,, should only be traversed in the direction of their “arrow”
to avoid merging replication sets. Such links are shown as
dashed linesin the figure. When computing the replication
set for Ry we would reach O, but would stop there. Simi-
larly, when computing the R, set we would aso reach O,
but would again stop there.

In summary, we introduce the concept of a graph with anno-
tated links. In such agraph, every link isannotated in one of
three ways:

. two-way recursive; The link should always be traversed dur-

ing areplication set traversal.

. one-way recursive: Thelinksshould only betraversed in the

direction of thelink during areplication set traversal.

. non-recursive: Thelink should never betraversed when defin-

ing areplication set.

The annotated type of a link is specified when the link (and
thus the object containing the link) is crested. The example
shown in Figure 6 can serve as a template for determining
how links should be marked. If it is desirable change the
annotation on alink after itiscreated, then thereplication set
traversal agorithm must be extended to allow the annotations
on links to be modified by an administrator. Since modifi-
cations cannot be written to objects, these modifications can
be represented as version chains, and the traversal agorithm
would be designed only to consider the most current version
of a link when deciding whether to traverse it. Thisis an
example of the generally applicable strategy of representing
modifications as version chains rather than modifying digital
objects themsel ves.

4.3 Detecting object corruption

Each site periodically constructs a snapshot of the replica
tion set of each known agreement.? A snapshot includes the
handles of al non-corrupted objectsthat are part of the agree-
ment. Snapshots are then compared with the corresponding
ones at remote sites.

Sometimes it is easy to see that an object is corrupted. For
example, our SAV writesobjectsto disk using Java 2’ sserial-
ization operations, and when an obj ect cannot be unserialized,
corruptionis clearly present. In addition, the reliability layer
also must detect less obvious corruption that exists when an
object can be read from disk but nonetheless contains in-
correct information. This type of corruption is detected by
comparing an object’s stored CHECK value (see Section 2)
with afreshly recalculated error detection code based on the
current contents of the object.

The snapshot construction algorithmis as follows:

. A list (called snapshot) is created and isinitially empty.

2The objects representing replication agreementsform part of animplicit
agreement among all sites. Thus, if an agreement object is lost at a site, it
will be recovered from another site.

. A search stack iscreated and initially containsonly thehandle
of the replication agreement.

. A handle is popped off of the search stack; the object it
identifiesisthe current object.

. The current object is checked for corruption by comparing
the recalculated error code with the value CHECK stored in
the object. If current is corrupted, the object is ignored and
the algorithm returns to step 3. If current is not corrupted,
the algorithm continues.

. The handle of the current object isadded to the snapshot list.

. Each of the links pointing to or from current are traversed
(using the pointer index) if and only if such atraversa isin
linewith the annotated link. Traversing these links produces
a set of objects. The handle of each of these objectsis added
to the search stack, unless the object has been seen before
(infiniteloops must be avoided).

. If there are still handles on the search stack, the agorithm
returnsto step 3.

4.4 Comparing replication set snapshots
The computed snapshot is compared to a remote replication
set asfollows:

. The handle of every object discovered inthelocal traversa is
stored in ahash table S;, by theloca site.

. The handle of every object discovered in the remote traversal
isstored asan iteminalinear list Si by the remote site, and
sent to thelocd site.

. Theloca site creates anew, empty linear list L.

. The locd site traverses Sgr, performing a lookup in the S,
hash table for each object.
o |f theobject isfound, itisremoved from S¢.
o If theobject isnot found, it isstoredin L.
. Every object remainingin Sz is“missing” at the remote site.
Every object listedin L is“missing” at thelocal site.
o |f an object is missing at the remote site, the loca site
sends that object to the remote site. The remote site stores
the object, overwriting any previously stored object with
the same handle. (The previoudly stored object must be
corrupted.)
o If an object is missing at the local site, the local site
requests the object from the remote site. The loca site
stores the object, overwriting any previoudy stored object
with the same handle.

The snapshot construction and comparison process scales
linearly. That is, if thenumber of objectscurrently inthelocal
replication set is V, and the number of remote objectsis M,
thenthetotal timeisO(N + M). Theagorithmdoesrequire
that an entire snapshot be sent fromtheremotesiteto thelocal
site. Thiscould be expensive over alow bandwidth line, even
though the snapshot only contains handles, not the objects
themselves. Some possible optimizations are discussed in
the following subsection.

Nats ba ivjerlanp | iesjaiges]

Figure 7: Performance of the reliability layer.

A useful variaion to this agorithm is to have the remote
siteinclude the CHECK values for all objectsin its snapshot.
Thiswould alow the local siteto detect a scenario where an
object was corrupted at a backup site before the object was
created (and hence the backup site CHECK does not match the
original CHECK).3 In our SAV system, handlesareidentical to
the CHECK val ues, so thisextracheck isimplicitly performed
for free.

4.5 Performance measurements

In order to evduate the performance of the reliability layer,
we conducted experiments on our SAV prototype. Two in-
stances of SAV were started, one running at the IBM Intel-
listation described in Section 3.3, and another running on
a Gateway E-4200 (450 MHz Pentium 111, 256 MB RAM,
512 MB swap). The machines were connected by a 10 Mbit
Ethernet LAN. The same data sets described in Section 3.3
were replicated between the two sites, and the resulting snap-
shot times are indicated in Figure 7. In the figure, the solid
line represents the time to construct a snapshot at a particular
repository site. Thisprocessmust berepested at both thelocal
and remote sites for each site check; however, the snapshot
congtruction can run concurrently. The snapshot construc-
tion time scales linearly with repository size, and represents
an incremental duration of 39 milliseconds per object (2.2
seconds per megabyte). Moreover, the snapshot comparison
time (dottedlinein Figure7) also scaleslinearly withincress-
ing repository size, representing an incremental duration of
8.8 milliseconds per object (480 milliseconds/megabyte).

The amount of time to send a snapshot from one site to
another was negligible in our experiments, due to the fast
network. Various optimizations are possible for use with
dow networks or very large repositories. For example, the
remote site can compute a signature S (e.g., CRC) of al
the handles in the snapshot. Instead of sending the entire
snapshot, the remote site only sends S, a single number.
The local site computes the signature of its snapshot, and
compare both signatures. |If the signatures match, then the
snapshots are the same. |If the signatures do not match, then

3This assumes both sites compute error codesin the same way.

the snapshots could be subdivided and signatures computed
for each subdivision until the local site can determine what
the differences are between the snapshots. This optimization
is described in more detail in [7].

Another possibility is to perform the snapshot construction
and comparison incrementally over a period of days. For
example, both sites could start the traversal on the first day,
but only descend a certain number of levels in a breadth
first traversal of the replication set objects. This would pro-
duce partia snapshots, which the sites would compare. The
sites would exchange any objects missing from the partial
snapshots. On day two, both sites would descend further in
the traversal to produce another partia snapshot. Eventu-
ally, both sites would reach the end of the traversal, a which
point all of the partial snapshotsthat were produced would be
equiva ent to the compl ete snapshot. Then, the process would
repest at thefirst day again. Inthisway, only asmall amount
of bandwidthwouldbe utilized each day. This schemewould
require amechanism for dealing with new objects added after
the first day. Such objects could be included if they appear
in apartia snapshot after they were added. Alternately, they
could be excluded until the snapshot process restarts.

5 USER INTERFACE

Our current SAV prototype includes an administrative user
interface that lets a manager examine and modify the reposi-
tory. Ingeneral, thegoalsfor such an interface areasfollows:

. The user must be able to locate specific digital objectsin the
repository, even if the repository contains large numbers of
objects.

. Theuser must beableto easily perform structuring operations
on objects, such as grouping related objects into sets, and to
view the topology of object structures.

. The user must be easily able to set configuration parameters
of the system. Thisincludes defining replication agreements.

. The interface module must not significantly detract from the
performance of the rest of the system.

The best way to achieve these goalsisto provide specialized
types of viewsinto the repository:

o objectsview: A genera view which can display any object
in the archive.

o structureviews: Viewsthat display common objects struc-
tures, such as sets or version chains.

o configurationviews: Viewswhich allow auser to configure
the system and its replication agreements.

Our SAV prototype currently includes four different views,
and will be extended to include others. Due to space lim-
itations, in this section we only bri€fly illustrate two of the
views. For acomplete discussion, which covers performance
issues related to the user interface, please see [4].

Figure 8 is a screen shot of our set interface (an example of
a structure view). The objects that participate in sets can be

fx:

e L e [5 =y

TR 'Ir!l'rllg-rf--'-]

RERsATy 1FE
T LT
B et i bbb
1"{_ :_ pn : Créam nE
b Bt ol % F add docared |
o E T T s
T ot
- PR
[4K H -
a1} Dai o = | BT
- ol W caw N et
- wi of e i ' aope i b 3 i 114
- e 0 A i B A eyl LNTTE
a | 1]
Fasr | sty |

Figure 8: The Setsview

viewed through a more generic interface (not shown here),
but the set interface is especialy tailored to show sets and
their members clearly.

In the set view, only sets and their members are shown. A
set is represented by the “stacked document” icon, and a set
member is represented by the “single document” icon. The
default view shows all of the sets in the repository and a
descriptive string.* The filter window (bottom of Figure 8)
can be used to restrict which sets are shown (using regular
expressions). Set objects can be expanded (by clicking on
the icon) to show the set members. If one of these members
is another set, that set can be further expanded to show its
members. The “View” button on the |eft lets one view the
contents (label, value pairs) of a selected digital object. (A
separate, specialized view window is opened.)

Because a structure view is specific to a particular object
structure, it can also be used as an interface for constructing
that particular structure. Figure8 showsa“ Create set” button,
which can beused to create anew set, and an “Add document”
button, which can be used to add an object to an existing set.
The“Refresh” buttonissimilar to a“reload” button on aweb
browser; it forcestheinterfacedriver to get fresh information
from the repository. This decoupled interaction between the
interface and the repository makes it unnecessary for the
repository to continuously update the display. The menus at
the top of thewindow provide additional functionality that is
not discussed here.

An example of a configuration view is shown in Figure 9.
This replication agreement interface lets administrators cre-
ate and configure agreements. The default display of the
replication agreement view isalist of the active agreements.
Each agreement can be expanded to view thelist of sitesin

4 Currently, objects contain a DI SPLAYNOTES field that describestheir
role or use. Thisfield is used asthe object descriptionin the view. Thefilter
window searches over thesefields.

L R e . [-]

e L e [S =y
LT | My EFEETEYE |

B R
I-ﬁ- k- | nmr
A ——"
Do IEI
- T (L did b ETaE
P Perk:ricr ar !
g i 1 X Edd
. T ;
« il i Hd
-p——" "
% Carrar H
L B b
5wl H
i
o L
o o e e 5 X
- T 1
|- Pl o UT] AT TIT petanbn b =4
3| I i
Fasr | sty |

Figure 9: The Agreementsview

the agreement as well as the replication set. Since replice
tion sets are defined recursively (Section 4.2), our interface
allows objects in the replication set to be expanded to reveal
linked objects. In thisway, auser can manually examine the
graph that will be automatically traversed by the reliability
algorithm. Asbefore, individual objects can be viewed using
the “View” button, and individua agreements can be found
using the filter field. Finaly, the “Create agreement,” “Add
site” and “Add document” buttons| et the administrator enter
new agreements, and add sites and objectsto them.

6 THE INFOMONITOR

After developing SAV, we discovered a “sad fact” about
archival repositories: Many users do not want to deposit their
digital objects in an archival repository, or in any form of
digital library for that matter! They are perfectly happy with
their objects residing on conventiond file systems or web
servers, where they can use their favorite editors and tools
to work on them. After al, it is not their job to ensure that
their objects are available to future generations years from
now. However, preservation is the job of alibrarian. So, the
librarian running an archival repository needs toolsto “* cap-
ture” important objects in away that does not require active
participation by users (but of course requires user consent).
The InfoMonitor we describe in this section represents one
such tool.

The InfoMonitor serves as a “bridge” between a repository
such as SAV and an existing environment where digita ob-
jectsreside. Wewill useaweb siteas our runningexamplefor
the existing environment, but the InfoMonitor can be used in
other scenariostoo. Users continueto cregate, edit and access
web pages using standard tools (e.g., Netscape Composer,
Explorer browser). ThelnfoMonitor carefully tracksthefiles
representing the web pages, and decides what objects should
be archived. In addition, it monitors changes to the files,
trangl ating those changes into updates to the repository.

InfoMonitorDirectory

‘Set:/

| set: fsubiry/ \

[Pt

Filter3
e

| set: fsubdir Usubdir2/

Figure 10: The data structure created in the
Archival Repository by the InfoMonitor.

One of the hardest challenges faced by the InfoMonitorisin
deciding how to interpret the changes to the web site. For
example, supposethat aweb pageismodified. Modifications
are not alowed on the repository, so the action must be auto-
matically trandated into the crestion of a new version of the
corresponding digital object. If the web page is deleted, a
“final” version is added in the repository, indicating that the
web pagewasremoved. Changestotheweb sitefile structure
must be carefully analyzed to determine how they impact the
archived objects. For instance, if a web page is “moved”

from onelocation to another, thisaction can be interpreted as
adeletion followed by an insertion, or it can beinterpreted as
new version of the web page (where one of its properties, its
file name, was changed).

The InfoMonitor offersan administrative user interface, anal-
ogous to the one described in Section 5. Through thisinter-
face, an administrator can define portions of the web site
to archive (by setting “filters’), and can examine archived
objects and how they map to web site files. The interface
also offers a historical view, where archived objects can be
viewed as of agiventime. Finaly, the administrator can aso
restore web site files based on the repository objects. Thus,
the InfoMonitor offers a fairly automated way to archive a
web site. Web users do not need to perform explicit saves to
the repository, yet their pages are safely archived.

Figure 10 illustrates how the InfoM onitor represents the web
pages as digital objects. The left hand side structure mimics
the target file structure, while the right side represents the
selection filters and other data. If the top level InfoMonitor
Directory is added to areplication agreement, then thisentire
structure will bereplicated at other repository sites.

Initialy, the structure of Figure 10 is created by a bulk load
utility that scans the web site. (This same utility was used to
acquire the data sets used for the experiments of Sections 3

and 4.) The InfoMonitor can perform two types of periodic
checks to track the web site: a quick and a low one. The
quick scan compares thetimestamps of fileswith those of the
archived objects, to detect new or modified files. Timestamps
can be unreliable, so the slow scan actually compares the
contents of files to the archived content. In either case, as
changes are observed, the appropriate objects are added to
the archival repository.

The InfoMonitor has been implemented as part of our SAV
prototype. It is currently being used to archive 55,000 files
(1.7 GB) of our group’s web site. Additional details and
performance numbers are availablein [5].

7 RELATED WORK

The digita library community has begun to focus on the
problem of designing and implementing long term archives.
The Task Force on Archiving of Digital Information exam-
ined many of the aspects of the archiving problem in [10].
Several projects have focused on building archives, including
the Computing Research Repository [12] and the Archival
Intermemory Project [11, 2]. Both of these projects have
investigated implementation issues, athough they have fo-
cused on different archive architectures than the SAV design
we discuss here.

The archiving problem is related to the problem of increas-
ing the reliability of file systems. A few investigators have
looked at ways to perform file backup [3, 13]. Another ap-
proach isto redesign thefile system itself toincorporate more
reliability features. One ideais to use Redundant Arrays of
Inexpensive Disks (RAID) [16], so that disk failures can be
overcome. Othershave suggested using logsto improve many
aspects of the file system, including the reliability [18]. A
third solutionisto use hierarchical replication systemsto re-
liably store digital objects, and several commercia products
have incorporated thisidea, including [15] and [6, 14]. The
backup problem focuses on shorter durationsthan the archiv-
ing problem. Moreover, users of backup systems are usually
interested in restoring the most current version of data, while
archives are responsible for storing al versions.

Another related area is the problem of maintaining consis-
tency between nodes in replicated databases. Much work
has been done in designing a gorithms for propagating data
from one replicate to another [1, 17]. These systems fo-
cus on systems that allow updates and deletions of objects.
Archival Repositories, which do not alow digital objectsto
be modified or erased, require different approaches.

8 CONCLUSIONS

In this paper we have discussed issues that arise when im-
plementing a reliable archive storage system. Although we
have discussed these issues from the perspective of our SAV
design, these issues are relevant to the construction of any
reliable archive. We have discussed solutions for defining
and indexing digital objects and references between them in

a write-once repository. We have discussed efficient algo-
rithmsfor replicating objects to multiplesites using different
replication networks, and for building and comparing snap-
shotsof repository contentsso that corruption can be detected.
These agorithms allow the set of replicated objects to grow
implicitly, rather than through the intervention of a human.

We have a so described two “ applications’ that interfacewith
SAV. Oneis an administrative user interface for monitoring
and controlling SAV. The second is the InfoMonitor, a tool
for automatically importing and tracking information outside
the repository.

The SAV prototype demonstrates that a reliable archive can
be built, that it can operate efficiently, and that it can interact
effectively with the outside world.

REFERENCES
1. Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi,
S. Seshadri, and Avi Silberschatz. Update propagation
protocols for replicated databases. In Proceedings of
the ACM SSGMOD Conference, 1999.

2. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Got-
tlieb, Sumeet Sobti, and Peter Yianilos. A prototype
implementation of archival intermemory. In Proceed-
ings of the Fourth ACM DL Conference, 1999.

3. Ann Chervenak, Vivekenand Vellanki, and Zachary
Kurmas. Protecting file systems: A survey of backup
techniques. In Proceedings Joint NASA and | EEE Mass
Sorage Conference, March 1998.

4. Brian Cooper, Arturo Crespo, and Hector Garcia-
Molina Implementing a reiable digital ob-
ject archive. http://www-db.stanford.edu/pub/papers/-
arpaperext.ps, 1999. Extended version of paper.

5. Brian Cooper and Hector GarciasMolina De
signing and implementing layered archival stor-
age systems. http://www-db.stanford.edu/pub/papers/-
fmpaper.ps, 1999. Submitted to ACM SIGMOD 2000.

6. IBM Corporation. Adstar distributed storage man-
ager (ADSM) - distributed data recovery white pa
per. http://www.storage.ibm.com/storage/software/-
adsm/adwhddr.htm, 1999.

7. Arturo Crespo and Hector GarciasMolina. Awareness
services for digital libraries. In Lecture Notesin Com-
puter Science, volume 1324, 1997.

8. Arturo Crespoand Hector Garcia-Molina. Archival stor-
age for digitd libraries. In Proceedings of the Third
ACM DL Conference, 1998.

9. Arturo Crespo and Hector GarciaMolina. Modeling
archival repositories for digital libraries. http://www-
db.stanford.edu/pub/papers/archsim.ps, 1999. Submit-
ted for publicationto ACM DL 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

John Garrett and Donald Waters. Preserving digital
information: Report of the Task Force on Archiving of
Digital Information, May 1996. Accessible at http://-
www.rlg.org/ArchTF/.

Andrew Goldberg and Peter Yianilos. Towards an
archival intermemory. In Advancesin Digital Libraries,
1998.

Joseph Halpern and Carl Lagoze. The Computing Re-
search Repository: Promoting the rapid dissemination
and archiving of computer science research. In Pro-
ceedings of the Fourth ACM DL Conference, 1999.

Norman C. Hutchinson, Stephen Manley, Mike Fed-
erwisch, Guy Harris, Dave Hitz, Steven Kleiman, and
Sean O'Malley. Logical vs. physical filesystem backup.
In Proceedings of the Third USENIX Symposiumon Op-
erating Systems Design and Implementation (OSDI),
1999.

Tivoli Systems Inc. Tivoli storage manager. http://-
www.tivoli.com/products/index/storage mgr/, 1999.

UniTree Software Inc. Unitree technical overview.
http://www.unitree.com/overview/overview.htm, 1999.

David Petterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID).
SIGMOD Record, 17(3):109-116, September 1988.

Michael Rabinovich, Narain Gehani, and Alex
Kononov. Efficient update propagation in epidemic
replicated databases. In Proceedings of the 5th Interna-
tional Conference on Extending Database Technology,
1996.

Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of alog-structured file system.
In Proceedings 13th Symposium on Operating Systems
Principles, 1991.

