
Implementing a Reliable Digital Object Archive

Brian Cooper, Arturo Crespo and Hector Garcia-Molina
Department of Computer Science

Stanford University
fcooperb,crespo,hectorg@DB.Stanford.EDU

ABSTRACT
An Archival Repository reliably stores digital objects for long
periods of time (decades or centuries). The archival nature
of the system requires new techniques for storing, indexing,
and replicating digital objects. In this paper we discuss the
specialized indexing needs of a write-once archive. We also
present a reliability algorithm for effectively replicating sets
of related objects. We describe an administrative user inter-
face and a data import utility for archival repositories. Finally,
we discuss and evaluate a prototype repository we have built,
the Stanford Archival Vault, SAV.

KEYWORDS: archival storage, digital objects, object repli-
cation, object indexing, user interface, archival repository

1 INTRODUCTION
Information stored and managed by today’s digital libraries
can be lost within years or decades if special care is not taken.
The causes include media and system failures, format obso-
lescence and bankruptcy of publishers. At Stanford we have
implemented a prototype archival repository, the Stanford
Archival Vault (SAV, pronounced “save”), for the long term
preservation of digital objects. These objects may include
documents, their metadata, and the programs for interpreting
formats. Our repository does not entirely solve the preserva-
tion problem, but we believe it provides an extremely reliable
storage infrastructure for preserving digital objects, even as
hardware, software, and organizations evolve.

As we implemented and tested our SAV prototype, we iden-
tified some unexpected, important challenges that led us to
modify our initial design, and to develop some new storage
and replication techniques. We believe that the encountered
challenges were not unique to our system, but represent some
fundamental problems that will be faced in the design of any
type of digital library preservation system.

For example, the nature of an archival repository implies that
objects should be preserved and not erased. As a result,
a repository should not allow users to arbitrarily delete or

overwrite digital objects. This write-once policy, which is
not present in conventional data stores, forces us to manage
data differently. For instance, consider a “set” object that
contains pointers to the different materializations of a given
document (e.g., the postscript version, the plain text version).
The usual way of updating this set is to write a new pointer
into the set object, or to delete a pointer from the object. Be-
cause the write-once policy forbids such changes, managing
collections of objects using sets requires new storage struc-
tures. Furthermore, these new structures require specifically
tailored indexes that can speed up common accesses to digital
library sets.

A second area where we faced unexpected challenges was in
the configuration of replication “agreements.” Any archival
repository must backup its digital objects to remote systems,
and hence must enter into some type of agreement with the
remote system regarding what objects to replicate. Agree-
ments need to be flexible so that different arrangements can
be described, e.g., a library L1 may wish to backup all its
technical reports (TRs) at library L2, but in addition Physics
TRs should be backed up at L3. Library L2 may in turn wish
to replicate some of the TRs fromL1 at another siteL4, while
simultaneously replicating some of its materials back at L1.
At the same time, it is important that new documents be auto-
matically and fully incorporated into the proper agreements,
without human intervention. For instance, suppose that a new
Physics TR is created, consisting of two materializations, a
postscript object, and a plain text object. As soon as the
“root” digital object for this TR (e.g., the one that links to its
components) is added to the set of Physics TRs, all the com-
ponents should be implicitly added to the proper agreements
and automatically backed up at L2 and L3. Achieving this
flexibility and automation required new concepts of replica-
tion sets and annotated links, concepts that will be useful in
any archival repository.

In this paper we discuss the challenges in implementing SAV
and the lessons we learned. We describe the mechanisms that
were developed and that could be used in any archival repos-
itory. Specifically, we make the following contributions:

� We identify the most useful indexes for a write-once archival
repository.
� We present a reliability algorithm that replicates digital
objects, and detects and corrects corruption in these objects.



� We introduce the concept of a replication set for the auto-
matic replication of digital objects.
� We define the concept of annotated links that restrict traver-
sals over a graph, for the purpose of conveniently specifying
replication sets.
� We describe an administrative user interface that provides
access to objects in a repository, with low system overhead.
� We introduce the InfoMonitor, an implemented software
package for migrating real-world data (e.g., from a web site)
into a repository.
� We present experimental performance results for SAV that
illustrate the costs and efficiencies of some of the techniques
we describe.

The rest of this paper is organized as follows. First, we
present a general model for an archival repository in Section 2.
Then, in Section 3 we describe the object storage component
of the system. Section 4 discusses the reliability layer, and
Section 5 examines the user interface. Section 6 presents the
InfoMonitor, while Section 7 discusses related work.

2 COMPONENTS OF AN ARCHIVAL REPOSITORY
Figure 1 shows the architecture of a prototypical archival
repository. Our implemented SAV follows this basic design.
However, here we address the general principles and features
that would form the basis of any archival repository. (For ad-
ditional details on the specific SAV architecture, refer to [8]).

The architecture in Figure 1 shows six distinct components
of the system. The first component is the object store. This
component stores and indexes digital objects so that they
can be efficiently retrieved by other modules. In addition,
the object store manages the assignment of object handles
(Section 2.1), indexing, and caching of digital objects. The
object store can be built on top of an existing storage system,
such as a file system or DBMS.

Object Store

Reliability Layer

Upper Layers
(e.g. Security)

Trusted
Remote Sites

Applications and
Data Import/Export User Interface

(e.g. InfoMonitor)

Figure 1: Architecture of the Archival Repository.

The long term archiving function of the repository is provided
by the reliability layer, which manages object replication and
corruption detection. This layer relies on different repository
sites, usually geographically dispersed, to store copies of the
objects. The reliability components at the various sites col-

laborate in detecting missing or corrupted information, and
restoring it. We assume that remote reliability components
are trusted. Communications among trusted reliability com-
ponents can be encrypted and authenticated using standard
techniques. The reliability layer can be configured in various
ways (e.g., number of sites involved,number of copies needed
for each object) to achieve different levels of reliability and
system cost; the determination of appropriate configuration
parameters is investigated in [9].

Upper layers on top of the reliability layer provide additional
functionality, such as user security, intellectual property man-
agement, and query processing. The upper layers provide a
programming interface (API), and appropriate information
models, so that various “applications” can access the repos-
itory. One such application is a user interface component
that allows users to view the contents of the repository and
perform operations on it. Another important application is an
import/export utility that provides batch migration of objects
into and out of the repository, from digital libraries that do
not provide the high reliability of the archival repository.

In this paper we focus on the lower system layers (object
store and reliability), which are the ones that have been im-
plemented in our initial SAV prototype. However, we do
cover two important applications that must deal directly with
the lower layers. One is a user interface for the system admin-
istrator (Section 5) that allows him to view the digital objects
in the repository, create new objects, group semantically re-
lated items together, and construct agreements to replicate
objects. A second application is the InfoMonitor (Section 6),
which migrates information from a standard file system or
web site into the repository.

2.1 Digital objects
We suggest that a stored digital object be given an object han-
dle, and consist of a list of fields (which are name/value pairs).
This model has the advantage of being both simple and pow-
erful enough to store most types of information. An object
handle is used by the system to efficiently locate an object.
Handles are seldom seen by users. Users see human-readable
names that are mapped by the system to one or more handles.
For example, a user requesting the “postscript” version of
“Tech Report #512” may be given access to the object with
handle “62975.” Our SAV system generates object handles
by computing a signature of the object’s contents. However,
other mechanisms for assigning handles are possible. The
work we describe in this paper is equally applicable to any
handle protocol.

The name/value pairs are defined by the creator of the object,
who generates as many fields as necessary. These fields store
content data, metadata, or any other useful values. More-
over, by storing another object’s handle as the value of a
field, an object creator can construct a relationship between
objects. Such a reference field represents a “link” between
two objects. To illustrate, a technical report object could



include fields with names AUTHORS, TITLE, CONTENT,
PREVIOUS, HANDLE, and CHECK. Field PREVIOUS could
contain an object reference to the previous version of the
technical report. In this way, a chain of report versions could
be represented in the archive. Other data structures that may
be useful are described in [8].

Two fields are required in all objects. Field HANDLE is a
required reference field containing the handle of the object
itself, while CHECK is an error detection code (e.g., CRC)
computed over all remaining fields. These two fields make it
possible to verify that a given object is not corrupted and is
indeed the object one believes it to be.

2.2 AR Properties
In order to protect digital objects against loss over time, in
general an archival repository must enforce certain properties.
The no deletions policy specifies that users should not have
the capability to delete objects once they are archived. A user
can “take out of circulation” an object by changing its access
rights, but this is different from physically erasing it from the
repository. Allowing users to delete objects is dangerous in an
archival system. Intentional deletions introduce ambiguous
situations where it is not clear if a missing object was deleted
by a user (and should not be restored) or lost due to some error
(and should be restored). With no intentional deletions, the
reliability layer simply restores any missing objects, leading
to much better long term reliability.

Similarly, the no modifications policy prevents users from
changing archived data. Modification are instead handled
by creating version chains, with a newer object pointing to
an older object via an object reference. No modifications
again eliminates ambiguous states where it is unclear which
is the “right” instance of a replicated object to restore. With
version chains, any lost or corrupted version is restored to
its original state. The no deletions and no modifications
properties together define a write-once archive, where data,
once written, is never erased.

The third property is universal handles. This property guar-
antees that an object retains its handle regardless of which
repositories it is replicated to, and that the handle is unique
within the repository network. Thus, a handle unambiguously
identifies a single object. Without this property, the system
would have to explicitly record what objects are copies of
which, greatly increasing the chances of errors. Moreover,
with universal handles, object references can be unambigu-
ously resolved, allowing the structure of a graph of objects to
be retained even as the objects are replicated to different sites.
Universal handles also has important efficiency benefits; for
example, two sites can quickly determine whether they have
the same objects simply by comparing lists of handles.

3 OBJECT STORE
The write-once policy forces us to represent related objects
in a way that is unique to archival repositories. To illustrate,

M1 M2 M3

A1

O1 O2 O3

Figure 2: Structure of set fO1; O2; O3g

Figure 2 shows how a “set” can be represented. (This set may
represent a collection of technical reports, the set of material-
izations of one report, the set of replication agreements at one
site (see Section 4), and so on.) The set is initially created
by generating a “set anchor” A1 object. An object likeO2 is
added to the set by creating a “set member” (represented by
M2 in the figure) which is an intermediate object pointing to
bothA1 and O2. A member O2 could be deleted (not shown
in the figure) by adding a “remove set member object” that
links to A1 and M2. All changes are recorded by adding
objects rather than by modifying objects.

The problem is that write-once structures are difficult to tra-
verse. For instance, in order to find all of the members ofA1,
it is necessary to scan all repository objects, looking for set
member objects (e.g. M1) that point to A1. These set mem-
ber objects would then point to theA1 members. Clearly this
traversal is very expensive, so we need auxiliary indexes to
help us locate objects of interest. The most useful indexes
for an archival repository are described in Subsection 3.1. In-
dexes need to be modified, so they cannot be stored as digital
objects, and do not enjoy the high reliability of digital ob-
jects. Subsection 3.2 discusses special mechanisms to ensure
the correctness of indexes.

3.1 Indexing digital objects
A first critical index is the handle index that maps handles
to the site-specific identifier (e.g., file name) that locates the
object. This index is best implemented as a hash table, with
universal handles as keys. This index, like the others we de-
scribe, is incrementally maintained. That is, as new objects
are created, the index is notified so the appropriate handle-
identifier pair is added. The handle index makes universal
handles feasible. Without site-specific information in a han-
dle, and without a handle index, one would be forced to find
an object O1 by scanning all repository objects looking for
one with field HANDLE = O1.

Another important index is the pointer index that gives the
handles of all objects that link to a given object Oi. For
example, for A1 in Figure 2, the pointer index can quickly
give us the handles for M1, M2 and M3, from which we can
find the members of setA1. Note than in a traditional system a
pointer index may be unnecessary if all references are “doubly
linked.” However, in an archival repository, A1 cannot point
toM1 (which was created afterA1). Hence, a pointer index is
essential. Again, a pointer index is best implemented as hash



table. For convenience, the pointer index can be extended to
list the outgoing links for each object. This makes it possible
to traverse the repository’s graph structure without retrieving
the objects themselves.

To make a pointer index feasible, stored fields (Section 2.1)
that contain references must be tagged as such. This allows
the system to scan repository objects, extract references and
build the index. The creator of an object must tag handle
fields, either by indicating they are of “handle type” or by
using field names that the system recognizes as containing
handles (e.g., PREVIOUS in our earlier example).

The third type of index is an object structure index, designed
to record the members of a particular object structure, e.g.,
a set or a version chain. For example, if we look up A1 of
Figure 2 in a set index, we would directly obtain the handles
forO1,O2 andO3. This same information could be obtained
from the pointer index, but at a greater cost. (With a pointer
index we would have to examine all objects that point toA1,
look for the set member objects, and then follow their links to
the members.) Moreover, the set index can also give us a list
of all sets in use, and (if properly inverted) the sets a given
member participates in.

3.2 Maintaining index consistency
Indexes are important for the operation of the repository, yet
they are inherently not as reliable as digital objects. First,
it does not make sense to replicate indexes across sites to
achieve reliability. (Indexes contain site specific information
that is not useful at the remote sites, and since indexes change
often, updating the remote copies would be too expensive).
Second, since indexes are updated in place, they are much
more prone to software errors than write-once digital objects.

There are two steps to ensure that index errors do not cor-
rupt the underlying digital objects. The first step is to make
indexes disposable. This means that no information that is
critical for the long-term survival of the repository should be
placed in an index. In other words, it should be possible to
at any time throw away all indexes and reconstruct correct
indexes from the underlying digital objects. As a corollary,
all index information must be considered a hint only. For ex-
ample, if a pointer index tells us that object O1 points toO2,
we must verify this (by looking at the actual objects) before
performing a critical operation based on this information.

With disposable indexes, a corrupted index will not adversely
affect the digital objects, but can still be very inconvenient.
For example, consider a set A2 representing the three avail-
able recordings for a given song (e.g., MP3, wav, midi). If
the index is corrupted, the index may tell us that only two
recordings are available, or may give us a recording for a dif-
ferent song! A user query could check and ignore the bogus
recording, but it will not easily discover that there is a missing
recording. The information is not lost, since the recording
objects are still in the repository, and are still linked to A2.

Yet, to avoid inconveniencing the user, it is very important
to make every effort to ensure that the indexes are consistent
with the uncorrupted digital objects.

There are two ways to ensure this consistency of indexes:

� Rebuild from scratch: Periodically discard an index, and
completely rebuild it from the objects in the archive. The
rebuild procedure is also useful when objects are added in
bulk through a data import utility (see Figure 1).
� Check and repair: An index is checked and fixed incre-
mentally.

To illustratea check and repair process, consider checking the
handle index. The object store iterates through each of the
handles in the index, and loads the corresponding object from
disk. Each object is then be examined to ensure that indeed
its HANDLE is what the index reports. If not, the “bad” index
entry referring to that object is deleted, and a new, correct
index entry is added.

Note that index rebuilding easily discovers objects that are
completely missing from the index, while a check and repair
task can only verify existing entries in the index. On the
other hand, check and repair allows the index to be available
continuously, while the index created by the rebuild task is
not available until the rebuild is complete.

In our implemented SAV system, indexes are kept in main
memory, so they need to be rebuilt from scratch at system
startup. They are also rebuilt at the prompting of a user, or
at predefined intervals. A check and repair mechanism could
be added in the future.

3.3 Performance measurements
To evaluate the overhead of managing and rebuilding indexes,
we conducted experiments on our SAV prototype, running on
an IBM Intellistation (450 MHz Pentium II, 256 MB RAM,
512 MB swap). The SAV itself is implemented in Java 2,
and uses VisiBroker 3.4 CORBA to communicate between
repository sites. Digital objects representing real documents
from the Stanford Database Group’s web site were stored in
the archive. Six object sets of different sizes were tested in
order to assess scalability. The smallest set contained over
300 objects and almost 5 MB of total data, while the largest
contained over 30,000 objects and 600 MB of total data. In
each set, the average object size was 18 KB. The results are
shown in Figure 3. The solid line in the figure represents the
total time required to import (in bulk), write and fully index
all of the objects in the archive. The dotted line in Figure 3
indicates the time to rebuild all of the indexes for existing
objects. Both tasks scale linearly with increasing number of
digital objects. The object store requires an incremental writ-
ing and indexing time of 150 milliseconds per object or 8.5
seconds per megabyte. The index buildingoperation requires
an average of 19 milliseconds per object or 1.1 seconds per
megabyte. It takes about 10.5 minutes to rebuild the indexes
for the full 600 MB repository.



Figure 3: Performance of the object store.

Of course, it is very good that costs scale linearly, but they may
still be significant for large archives. One solution is to rebuild
each type of index at a different time. Another solution is
to partition a repository into smaller sets that are reindexed
at separate times. This would spread out the rebuilding over
time. If this scheme is used, there must be some mechanism
to deal with object references that cross partitions, perhaps
by querying the indexes for both partitions simultaneously.

4 RELIABILITY LAYER
As described in Section 1, the replication layer backups up ob-
jects remotely, detects lost or corrupted objects, and restores
them to their pristine state when necessary. The challenge
is to develop flexible mechanisms for determining what sites
participate in replication agreements, and what objects are
backed up where. In addition, we need efficient mechanisms
for checking and restoring information. In this section we
describe the techniques and algorithms that were developed
as the SAV prototype was implemented, but that we believe
are well suited for any archival repository.

The example shown in Figure 4a illustrates the basic replica-
tion steps we follow. The replication process begins when a
replication agreement R1 is created at one of the three sites
(Stanford in the example). Object R1 identifies the sites that
participate (Stanford, MIT, Berkeley) and the objects that are
to be replicated. For now, let us assume that R1 simply con-
tains pointers to the objects to replicate, O1 and O2. Objects
R1, O1 and O2 initially exist only at Stanford, so Stanford
conducts the first site check. The Stanford site contacts the
MIT site and discovers that MIT does not yet know about the
agreement, so that all three objects are replicated to MIT.1

Similarly, all three objects are copied to Berkeley (Figure 4b).

Each of the three sites then begins a cycle of repeated site
checks, connecting to the other two sites and comparing snap-
shots. As long as there are no errors, the snapshots will agree.
However, consider the situation where O1 is lost at Stanford

1As described earlier, the reliability layers at each site trust each other, so
they willingly take each others’ agreements and objects. Clearly, beforeR1

was created, Stanford checked with the other sites to see if there was enough
storage capacity, or to arrange for payment for the service.

MIT

Berkeley

R

Stanford

O1

1

O
2

(a)

MIT

Berkeley

O1

O
2

R
1

O1

O
2

R
1

O1

O
2

R
1

Stanford

(b)

Figure 4: A replication network

due to a disk failure. The next site to perform a site check,
will notice that O1 is missing, so O1 will be copied back to
the Stanford site.

4.1 Replication networks

Our example illustrates a strongly connected replication net-
work. Each of the sites holding a copy of R1 knows about
the other sites, and each site contacts every other site during
the site check. If there are N sites in the network, each site
check must contact N � 1 sites. This structure is recorded in
R1 by including a complete list of the sites in the agreement.

Other structures are possible, as illustrated in Figure 5. In a
weakly connected network, each site is connected to some,
but not all, of the other sites. The topography of the structure
could be a cycle, as shown in the figure, or another structure,
such as a tree. The strongly connected network has the ad-
vantage that each site check connects with every site, which
means that new objects are quickly replicated to all sites. In
contrast, the weakly connected network allows each site to
connect to a fixed number of remote sites (two in the example)
even as the number of sitesN in the network grows. Because
fewer sites are contacted, site checks take less time and so
they can be performed more frequently. This decreases the
interval between the occurrence of a failure and the detection
and correction of the error.

Weakly connectedStrongly connected

Figure 5: Different kinds of replication networks.

In a weakly connected network, links between sites are actu-
ally separate replication agreements, listing only the sites for
that link. In order to construct weakly connected replication
networks, it is therefore necessary for different agreements
at the same site to include the same digital objects. This



capability is one of the features of the snapshot construction
algorithm described in the next section.

4.2 Constructing snapshots of the replication set
In Figure 4a we suggested that agreement R1 point to the
“covered” objects O1 and O2. This is clearly not a good
idea since we could never add more objects to the agreement.
(Digital object R1 cannot be modified.) An alternative is
to treat the agreement object as a set anchor, so that any
object connected via a “set member” object is covered. For
example, in Figure 6, R2 would cover O2 and O3. (In this
figure, please ignore for now the different types of pointers.)
This is still not flexible enough, since new objects would have
to be explicitly linked toR2.

V1

M4

T1

V2

V3

R2

M3

R1

M2

O2 O3

R3

M5

O4

M1

Figure 6: Example replication sets.

Our solution is to recursively define the covered objects in
terms of the link structure of the repository. To illustrate,
suppose we wish to cover all versions of a technical report
under agreement R1 in Figure 6. The different versions
of the report, V1, V2 ... Vn, are related using a version
chain, in which version Vi points to the previous version
Vi�1. Initially, the first version V1 is added to R1 (through
M1). When V2 is created, it need not be explicitly added to
R1. Our replication algorithm will implicitly include V2 in
R1 because there is a path to it fromR1 (viaM1 and V1). As
more versions are created, they are also implicitly included.
Thus, the replication set ofR1 includes all objects recursively
reachable fromR1 (“backwards” links count).

There is a problem with this simple description of a replication
set. To illustrate, consider agreements R1 andR2 in Figure 6.
Their replication sets are connected by O2, so if we blindly
include everything that is linked to R1 in its replication set,
we would include all of R2’s set! Even if agreements do not
overlap, other objects may act as bridges and connect them.
For instance, in Figure 6, object T1 is such a bridge object.
(Object T1 may be linking objects written by the same author,
for example.)

Our solution is to annotate repository links to indicate when
they should be traversed in building replication sets. Some
links, like the ones out of T1 in Figure 6, should never be
traversed. Links such as these have nothing to do with repli-
cation, and are shown as dotted lines in the figure. Other
links like the ones betweenM2 andO2, and betweenM3 and

O2, should only be traversed in the direction of their “arrow”
to avoid merging replication sets. Such links are shown as
dashed lines in the figure. When computing the replication
set for R1 we would reach O2 but would stop there. Simi-
larly, when computing the R2 set we would also reach O2,
but would again stop there.

In summary, we introduce the concept of a graph with anno-
tated links. In such a graph, every link is annotated in one of
three ways:

1. two-way recursive: The link should always be traversed dur-
ing a replication set traversal.

2. one-way recursive: The links should only be traversed in the
direction of the link during a replication set traversal.

3. non-recursive: The link should never be traversed when defin-
ing a replication set.

The annotated type of a link is specified when the link (and
thus the object containing the link) is created. The example
shown in Figure 6 can serve as a template for determining
how links should be marked. If it is desirable change the
annotation on a link after it is created, then the replication set
traversal algorithm must be extended to allow the annotations
on links to be modified by an administrator. Since modifi-
cations cannot be written to objects, these modifications can
be represented as version chains, and the traversal algorithm
would be designed only to consider the most current version
of a link when deciding whether to traverse it. This is an
example of the generally applicable strategy of representing
modifications as version chains rather than modifying digital
objects themselves.

4.3 Detecting object corruption
Each site periodically constructs a snapshot of the replica-
tion set of each known agreement.2 A snapshot includes the
handles of all non-corrupted objects that are part of the agree-
ment. Snapshots are then compared with the corresponding
ones at remote sites.

Sometimes it is easy to see that an object is corrupted. For
example, our SAV writes objects to disk using Java 2’s serial-
ization operations, and when an object cannot be unserialized,
corruption is clearly present. In addition, the reliability layer
also must detect less obvious corruption that exists when an
object can be read from disk but nonetheless contains in-
correct information. This type of corruption is detected by
comparing an object’s stored CHECK value (see Section 2)
with a freshly recalculated error detection code based on the
current contents of the object.

The snapshot construction algorithm is as follows:

1. A list (called snapshot) is created and is initially empty.
2The objects representing replication agreements form part of an implicit

agreement among all sites. Thus, if an agreement object is lost at a site, it
will be recovered from another site.



2. A search stack is created and initiallycontains only the handle
of the replication agreement.

3. A handle is popped off of the search stack; the object it
identifies is the current object.

4. The current object is checked for corruption by comparing
the recalculated error code with the value CHECK stored in
the object. If current is corrupted, the object is ignored and
the algorithm returns to step 3. If current is not corrupted,
the algorithm continues.

5. The handle of the current object is added to the snapshot list.

6. Each of the links pointing to or from current are traversed
(using the pointer index) if and only if such a traversal is in
line with the annotated link. Traversing these links produces
a set of objects. The handle of each of these objects is added
to the search stack, unless the object has been seen before
(infinite loops must be avoided).

7. If there are still handles on the search stack, the algorithm
returns to step 3.

4.4 Comparing replication set snapshots
The computed snapshot is compared to a remote replication
set as follows:

1. The handle of every object discovered in the local traversal is
stored in a hash table SL by the local site.

2. The handle of every object discovered in the remote traversal
is stored as an item in a linear list SR by the remote site, and
sent to the local site.

3. The local site creates a new, empty linear list L.

4. The local site traverses SR, performing a lookup in the SL
hash table for each object.
� If the object is found, it is removed from SL.
� If the object is not found, it is stored in L.

5. Every object remaining in SL is “missing” at the remote site.
Every object listed in L is “missing” at the local site.
� If an object is missing at the remote site, the local site
sends that object to the remote site. The remote site stores
the object, overwriting any previously stored object with
the same handle. (The previously stored object must be
corrupted.)
� If an object is missing at the local site, the local site
requests the object from the remote site. The local site
stores the object, overwriting any previously stored object
with the same handle.

The snapshot construction and comparison process scales
linearly. That is, if the number of objects currently in the local
replication set is N , and the number of remote objects is M ,
then the total time isO(N +M ). The algorithm does require
that an entire snapshot be sent from the remote site to the local
site. This could be expensive over a low bandwidth line, even
though the snapshot only contains handles, not the objects
themselves. Some possible optimizations are discussed in
the following subsection.

Figure 7: Performance of the reliability layer.

A useful variation to this algorithm is to have the remote
site include the CHECK values for all objects in its snapshot.
This would allow the local site to detect a scenario where an
object was corrupted at a backup site before the object was
created (and hence the backup siteCHECK does not match the
originalCHECK).3 In our SAV system, handles are identical to
theCHECK values, so this extra check is implicitlyperformed
for free.

4.5 Performance measurements
In order to evaluate the performance of the reliability layer,
we conducted experiments on our SAV prototype. Two in-
stances of SAV were started, one running at the IBM Intel-
listation described in Section 3.3, and another running on
a Gateway E-4200 (450 MHz Pentium III, 256 MB RAM,
512 MB swap). The machines were connected by a 10 Mbit
Ethernet LAN. The same data sets described in Section 3.3
were replicated between the two sites, and the resulting snap-
shot times are indicated in Figure 7. In the figure, the solid
line represents the time to construct a snapshot at a particular
repository site. This process must be repeated at both the local
and remote sites for each site check; however, the snapshot
construction can run concurrently. The snapshot construc-
tion time scales linearly with repository size, and represents
an incremental duration of 39 milliseconds per object (2.2
seconds per megabyte). Moreover, the snapshot comparison
time (dotted line in Figure 7) also scales linearly with increas-
ing repository size, representing an incremental duration of
8.8 milliseconds per object (480 milliseconds/megabyte).

The amount of time to send a snapshot from one site to
another was negligible in our experiments, due to the fast
network. Various optimizations are possible for use with
slow networks or very large repositories. For example, the
remote site can compute a signature S (e.g., CRC) of all
the handles in the snapshot. Instead of sending the entire
snapshot, the remote site only sends S, a single number.
The local site computes the signature of its snapshot, and
compare both signatures. If the signatures match, then the
snapshots are the same. If the signatures do not match, then

3This assumes both sites compute error codes in the same way.



the snapshots could be subdivided and signatures computed
for each subdivision until the local site can determine what
the differences are between the snapshots. This optimization
is described in more detail in [7].

Another possibility is to perform the snapshot construction
and comparison incrementally over a period of days. For
example, both sites could start the traversal on the first day,
but only descend a certain number of levels in a breadth
first traversal of the replication set objects. This would pro-
duce partial snapshots, which the sites would compare. The
sites would exchange any objects missing from the partial
snapshots. On day two, both sites would descend further in
the traversal to produce another partial snapshot. Eventu-
ally, both sites would reach the end of the traversal, at which
point all of the partial snapshots that were produced would be
equivalent to the complete snapshot. Then, the process would
repeat at the first day again. In this way, only a small amount
of bandwidth would be utilized each day. This scheme would
require a mechanism for dealing with new objects added after
the first day. Such objects could be included if they appear
in a partial snapshot after they were added. Alternately, they
could be excluded until the snapshot process restarts.

5 USER INTERFACE
Our current SAV prototype includes an administrative user
interface that lets a manager examine and modify the reposi-
tory. In general, the goals for such an interface are as follows:

1. The user must be able to locate specific digital objects in the
repository, even if the repository contains large numbers of
objects.

2. The user must be able to easily perform structuringoperations
on objects, such as grouping related objects into sets, and to
view the topology of object structures.

3. The user must be easily able to set configuration parameters
of the system. This includes defining replication agreements.

4. The interface module must not significantly detract from the
performance of the rest of the system.

The best way to achieve these goals is to provide specialized
types of views into the repository:

� objects view: A general view which can display any object
in the archive.
� structure views: Views that display common objects struc-
tures, such as sets or version chains.
� configuration views: Views which allow a user to configure
the system and its replication agreements.

Our SAV prototype currently includes four different views,
and will be extended to include others. Due to space lim-
itations, in this section we only briefly illustrate two of the
views. For a complete discussion, which covers performance
issues related to the user interface, please see [4].

Figure 8 is a screen shot of our set interface (an example of
a structure view). The objects that participate in sets can be

Figure 8: The Sets view

viewed through a more generic interface (not shown here),
but the set interface is especially tailored to show sets and
their members clearly.

In the set view, only sets and their members are shown. A
set is represented by the “stacked document” icon, and a set
member is represented by the “single document” icon. The
default view shows all of the sets in the repository and a
descriptive string.4 The filter window (bottom of Figure 8)
can be used to restrict which sets are shown (using regular
expressions). Set objects can be expanded (by clicking on
the icon) to show the set members. If one of these members
is another set, that set can be further expanded to show its
members. The “View” button on the left lets one view the
contents (label, value pairs) of a selected digital object. (A
separate, specialized view window is opened.)

Because a structure view is specific to a particular object
structure, it can also be used as an interface for constructing
that particular structure. Figure 8 shows a “Create set” button,
which can be used to create a new set, and an “Add document”
button, which can be used to add an object to an existing set.
The “Refresh” button is similar to a “reload” button on a web
browser; it forces the interface driver to get fresh information
from the repository. This decoupled interaction between the
interface and the repository makes it unnecessary for the
repository to continuously update the display. The menus at
the top of the window provide additional functionality that is
not discussed here.

An example of a configuration view is shown in Figure 9.
This replication agreement interface lets administrators cre-
ate and configure agreements. The default display of the
replication agreement view is a list of the active agreements.
Each agreement can be expanded to view the list of sites in

4Currently, objects contain a DISPLAYNOTES field that describes their
role or use. This field is used as the object description in the view. The filter
window searches over these fields.



Figure 9: The Agreements view

the agreement as well as the replication set. Since replica-
tion sets are defined recursively (Section 4.2), our interface
allows objects in the replication set to be expanded to reveal
linked objects. In this way, a user can manually examine the
graph that will be automatically traversed by the reliability
algorithm. As before, individual objects can be viewed using
the “View” button, and individual agreements can be found
using the filter field. Finally, the “Create agreement,” “Add
site,” and “Add document” buttons let the administrator enter
new agreements, and add sites and objects to them.

6 THE INFOMONITOR

After developing SAV, we discovered a “sad fact” about
archival repositories: Many users do not want to deposit their
digital objects in an archival repository, or in any form of
digital library for that matter! They are perfectly happy with
their objects residing on conventional file systems or web
servers, where they can use their favorite editors and tools
to work on them. After all, it is not their job to ensure that
their objects are available to future generations years from
now. However, preservation is the job of a librarian. So, the
librarian running an archival repository needs tools to “‘cap-
ture” important objects in a way that does not require active
participation by users (but of course requires user consent).
The InfoMonitor we describe in this section represents one
such tool.

The InfoMonitor serves as a “bridge” between a repository
such as SAV and an existing environment where digital ob-
jects reside. We will use a web site as our runningexample for
the existing environment, but the InfoMonitor can be used in
other scenarios too. Users continue to create, edit and access
web pages using standard tools (e.g., Netscape Composer,
Explorer browser). The InfoMonitor carefully tracks the files
representing the web pages, and decides what objects should
be archived. In addition, it monitors changes to the files,
translating those changes into updates to the repository.

Set: /

File File

Set: /subdir1/

File File

File File

Filter1

Filter3

Filter2

File

File

Set: /subdir1/subdir2/

InfoMonitorDirectory

1

3

2

Figure 10: The data structure created in the
Archival Repository by the InfoMonitor.

One of the hardest challenges faced by the InfoMonitor is in
deciding how to interpret the changes to the web site. For
example, suppose that a web page is modified. Modifications
are not allowed on the repository, so the action must be auto-
matically translated into the creation of a new version of the
corresponding digital object. If the web page is deleted, a
“final” version is added in the repository, indicating that the
web page was removed. Changes to the web site file structure
must be carefully analyzed to determine how they impact the
archived objects. For instance, if a web page is “moved”
from one location to another, this action can be interpreted as
a deletion followed by an insertion, or it can be interpreted as
new version of the web page (where one of its properties, its
file name, was changed).

The InfoMonitoroffers an administrative user interface, anal-
ogous to the one described in Section 5. Through this inter-
face, an administrator can define portions of the web site
to archive (by setting “filters”), and can examine archived
objects and how they map to web site files. The interface
also offers a historical view, where archived objects can be
viewed as of a given time. Finally, the administrator can also
restore web site files based on the repository objects. Thus,
the InfoMonitor offers a fairly automated way to archive a
web site. Web users do not need to perform explicit saves to
the repository, yet their pages are safely archived.

Figure 10 illustrates how the InfoMonitor represents the web
pages as digital objects. The left hand side structure mimics
the target file structure, while the right side represents the
selection filters and other data. If the top level InfoMonitor
Directory is added to a replication agreement, then this entire
structure will be replicated at other repository sites.

Initially, the structure of Figure 10 is created by a bulk load
utility that scans the web site. (This same utility was used to
acquire the data sets used for the experiments of Sections 3



and 4.) The InfoMonitor can perform two types of periodic
checks to track the web site: a quick and a slow one. The
quick scan compares the timestamps of files with those of the
archived objects, to detect new or modified files. Timestamps
can be unreliable, so the slow scan actually compares the
contents of files to the archived content. In either case, as
changes are observed, the appropriate objects are added to
the archival repository.

The InfoMonitor has been implemented as part of our SAV
prototype. It is currently being used to archive 55,000 files
(1.7 GB) of our group’s web site. Additional details and
performance numbers are available in [5].

7 RELATED WORK
The digital library community has begun to focus on the
problem of designing and implementing long term archives.
The Task Force on Archiving of Digital Information exam-
ined many of the aspects of the archiving problem in [10].
Several projects have focused on building archives, including
the Computing Research Repository [12] and the Archival
Intermemory Project [11, 2]. Both of these projects have
investigated implementation issues, although they have fo-
cused on different archive architectures than the SAV design
we discuss here.

The archiving problem is related to the problem of increas-
ing the reliability of file systems. A few investigators have
looked at ways to perform file backup [3, 13]. Another ap-
proach is to redesign the file system itself to incorporate more
reliability features. One idea is to use Redundant Arrays of
Inexpensive Disks (RAID) [16], so that disk failures can be
overcome. Others have suggested using logs to improve many
aspects of the file system, including the reliability [18]. A
third solution is to use hierarchical replication systems to re-
liably store digital objects, and several commercial products
have incorporated this idea, including [15] and [6, 14]. The
backup problem focuses on shorter durations than the archiv-
ing problem. Moreover, users of backup systems are usually
interested in restoring the most current version of data, while
archives are responsible for storing all versions.

Another related area is the problem of maintaining consis-
tency between nodes in replicated databases. Much work
has been done in designing algorithms for propagating data
from one replicate to another [1, 17]. These systems fo-
cus on systems that allow updates and deletions of objects.
Archival Repositories, which do not allow digital objects to
be modified or erased, require different approaches.

8 CONCLUSIONS
In this paper we have discussed issues that arise when im-
plementing a reliable archive storage system. Although we
have discussed these issues from the perspective of our SAV
design, these issues are relevant to the construction of any
reliable archive. We have discussed solutions for defining
and indexing digital objects and references between them in

a write-once repository. We have discussed efficient algo-
rithms for replicating objects to multiple sites using different
replication networks, and for building and comparing snap-
shots of repository contents so that corruption can be detected.
These algorithms allow the set of replicated objects to grow
implicitly, rather than through the intervention of a human.

We have also described two “applications” that interface with
SAV. One is an administrative user interface for monitoring
and controlling SAV. The second is the InfoMonitor, a tool
for automatically importing and tracking information outside
the repository.

The SAV prototype demonstrates that a reliable archive can
be built, that it can operate efficiently, and that it can interact
effectively with the outside world.

REFERENCES
1. Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi,

S. Seshadri, and Avi Silberschatz. Update propagation
protocols for replicated databases. In Proceedings of
the ACM SIGMOD Conference, 1999.

2. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Got-
tlieb, Sumeet Sobti, and Peter Yianilos. A prototype
implementation of archival intermemory. In Proceed-
ings of the Fourth ACM DL Conference, 1999.

3. Ann Chervenak, Vivekenand Vellanki, and Zachary
Kurmas. Protecting file systems: A survey of backup
techniques. In Proceedings Joint NASA and IEEE Mass
Storage Conference, March 1998.

4. Brian Cooper, Arturo Crespo, and Hector Garcia-
Molina. Implementing a reliable digital ob-
ject archive. http://www-db.stanford.edu/pub/papers/-
arpaperext.ps, 1999. Extended version of paper.

5. Brian Cooper and Hector Garcia-Molina. De-
signing and implementing layered archival stor-
age systems. http://www-db.stanford.edu/pub/papers/-
fmpaper.ps, 1999. Submitted to ACM SIGMOD 2000.

6. IBM Corporation. Adstar distributed storage man-
ager (ADSM) - distributed data recovery white pa-
per. http://www.storage.ibm.com/storage/software/-
adsm/adwhddr.htm, 1999.

7. Arturo Crespo and Hector Garcia-Molina. Awareness
services for digital libraries. In Lecture Notes in Com-
puter Science, volume 1324, 1997.

8. Arturo Crespo and Hector Garcia-Molina. Archival stor-
age for digital libraries. In Proceedings of the Third
ACM DL Conference, 1998.

9. Arturo Crespo and Hector Garcia-Molina. Modeling
archival repositories for digital libraries. http://www-
db.stanford.edu/pub/papers/archsim.ps, 1999. Submit-
ted for publication to ACM DL 2000.



10. John Garrett and Donald Waters. Preserving digital
information: Report of the Task Force on Archiving of
Digital Information, May 1996. Accessible at http://-
www.rlg.org/ArchTF/.

11. Andrew Goldberg and Peter Yianilos. Towards an
archival intermemory. In Advances in Digital Libraries,
1998.

12. Joseph Halpern and Carl Lagoze. The Computing Re-
search Repository: Promoting the rapid dissemination
and archiving of computer science research. In Pro-
ceedings of the Fourth ACM DL Conference, 1999.

13. Norman C. Hutchinson, Stephen Manley, Mike Fed-
erwisch, Guy Harris, Dave Hitz, Steven Kleiman, and
Sean O’Malley. Logical vs. physical file system backup.
In Proceedings of the Third USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
1999.

14. Tivoli Systems Inc. Tivoli storage manager. http://-
www.tivoli.com/products/index/storage mgr/, 1999.

15. UniTree Software Inc. Unitree technical overview.
http://www.unitree.com/overview/overview.htm, 1999.

16. David Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID).
SIGMOD Record, 17(3):109–116, September 1988.

17. Michael Rabinovich, Narain Gehani, and Alex
Kononov. Efficient update propagation in epidemic
replicated databases. In Proceedings of the 5th Interna-
tional Conference on Extending Database Technology,
1996.

18. Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured file system.
In Proceedings 13th Symposium on Operating Systems
Principles, 1991.


