Archival Storage for Digital Libraries

Arturo Crespo
Department of Computer Science
Stanford University
E-mail: crespo@cs.stanford.edu

ABSTRACT

We propose an architecture for Digital Library Repositories
that assureslong-termarchival storage of digital objects. The
architectureisformed by afederation of independent but col-
|aborating sites, each managing acollection of digital objects.
The architecture is based on the following key components:
use of signatures as object handles, no deletions of digital
objects, functional layering of services, the presence of an
awareness service in all layers, and use of disposable aux-
iliary structures. Long-term persistence of digita objectsis
achieved by creating replicas at several sites.

KEYWORDS: Digita library repository, archival storage,
long-term preservation of data.

1 INTRODUCTION

A digita library repository (DLR) stores the digital objects
that constitute the library. The two key requirements that
distinguish DLRs from other information stores are archival
storage and intellectua property management. The archival
nature of a DLR means that the digital objects (e.g., docu-
ments, technical reports, movies) must be preserved indefi-
nitely, as technologies and organizations evolve[11, 13]. In-
tellectua property management is required because digital
objects will be served beyond the organization that runs the
repository or that owns the information. In this paper we
focus on the archival requirement.

There are two interrelated factors in the archiving of digi-
tal objects. data and meaning preservation. To illustrate,
consider the Mayan inscriptions on their temples. For us to
“read” them, first the carvings and paintings had to be pre-
served (data preservation) over the centuries. Second, the
meaning of their hieroglyphshad to be decoded, say into En-
glish. Thus, to preserve the meaning there needs to be some
trand ation machinery, which can be based on alot of guess-
work (as in the case of Mayan writings), or aids left behind
(which are of course extremely hard to provide in advance).
The trandation could be done gradualy and continuoudly,
to avoid spanning large differences in representations (e.g.,

Hector Garcia-Molina
Department of Computer Science
Stanford University
E-mail: hector@cs.stanford.edu

trandating a document in MS Word 4 to Word 5 to Word 6).

In this paper we focus on data preservation only. Thisis ad-
mittedly the much simpler of the two problems, but clearly,
without data preservation as a first step, meaning cannot be
preserved. Thus, we view a digital object as a bag of bits
(with some simple header information, to be discussed). We
will not concern ourselves here on whether this object is a
postscript file (or any other format), the document that ex-
plains how postscript isinterpreted (an aid for preserving the
meaning of the postscript file), or an object giving the meta
data for the postscript file (e.g., author, title). However, we
do wish to preserve relationships among objects. That is,
we will develop an identification scheme so that one object
can “point” or “reference’ another one. This way, for in-
stance, the metadata object we just discussed can identify the
postscript file it is describing.

Given our problem definition, thereader may wonder if thisis
asolved problem. After all, a database system can very reli-
ably storeobjectsand their relationships. Thismay betrue, as
long asthe same or compatibl e softwareisused to manage the
objects, but is not true otherwise. For instance, suppose that
the Stanford and MIT libraries wish to store backup copies
of each other’stechnical reports, but they each use different
database systems. It isnot possible (at |east with current sys-
tems) to tell the Stanford system that an object is managed
jointly withMIT. Similarly, say that Stanford’sdatabase ven-
dor goes out of business in 500 years, or Stanford decides
to use another vendor. Then migrating the objects el sewhere
can be problematic, since database systems typicaly repre-
sent reliable objects in ways that are intimately tied to their
architecture and software.

The goa of this paper is to present an architecture for the
archiving of digital objects. The objective is not to replace
database systems, but rather to allow existing and future sys-
temsto work together in preserving an interrel ated collection
of digital objects (and their versions) in the simplest and the
most reliable possibleway. Also, keep in mind that what we
are describing is the lowest layer(s) of a DLR; higher layers
(not discussed here) would ded with intellectua property,
metadata, security, and so on.

In Section 2 we present the key components of our architec-
ture that make long term archiving feasible. Then in Sec-

tions 3 through 6 we describe the functional components of
thearchitecture. In Section 7, we present acomplete example
that shows how those components work together. Finaly, in
Section 8 we discuss related work. Because of space limita-
tions, we cannot provide full details of the architecture, nor
explain how all failures and situations are handled. Instead,
we focus on explaining the main features and on representa-
tive examples.

2 KEY COMPONENTS

Under our architecture, a Digital Library Repository (DLR)
is formed by a collection of independent but collaborating
sites. Each site manages a collection of digita objects and
provides services (to be defined) to other sites. Each siteuses
one or more computers, and can run different software, as
long asit follows certain simple conventionsthat we describe
in this paper. Our architecture is based on following key
components.

2.1 Signatures as Object Handles

Each object in a DLR has a handle used to identify and
retrieveit. Handles are internal to the DLR and are not used
by end users to identify documents. (Example: If auseris
searching for report STAN-1998-347-B, anaming facility not
discussed here will trandate into the appropriate handle, or
handlesif the report has multiple components.)

Given an object, we define itshandle to be a (large) signature
computed exclusively from its contents, using a checksum
or a Cyclic Redundancy Check (CRC). If the contents are
smaller than the size of the signature, the object (at creation
time) is“padded” with arandom stringto makeitssizelarger
than the size of a signature. This scheme has the following
properties, which are important in an archiva environment:

e Each site can generate objects and their handles without
consulting other sites. This makes it possible for sites to
operate independently. Furthermore, sites only need to agree
on the signature function, not on software versions, character
sets, timestamp services, and so on.

¢ The handle for an object can be reconstructed from the
object itself. As we will see, thisis an extremely useful
property, since we do not need to reliably save any handle-
to-object mappings.

o If copies of an object are made at different sites, all copies
will have identical handles. This may seem disconcerting at
first, but if the contents are identical, it makes management
simpler to call “a spade a spade”

o Objects with different contents will, with extremely high
probability, have different handles.

The last item requires some discussion, since it may be pos-
sible that two different objects share a handle, which would
be disastrous. However, by making the signature large (e.g.,
128 bits or more), the likelihood of this disaster happeningis
so extremely low that it is not rationa to worry about it. To
illustrate, in Appendix 1 we derive abound for the probability
p that there is no disaster in a DLR with n objects and sig-

natures of size b bits. The bound is extremely conservative,
but yet we see that, say, a 256 bit signature can make even a
DLR with 10 billion objectsincredibly safe.

Collection | Probability of Signature
Size(n) | nocollisions(p) Size (b)
107 1—107° 76 bits (10 bytes)
108 1—-107° 83 bits (11 bytes)
10° 1—-107° 89 bits (12 bytes)
107 1—-10-% 128 bits (16 bytes)
107 1—-10-93 256 bits (32 bytes)
1010 1—10"1'® 128 bits (16 bytes)
100 1—10757 256 hits (32 bytes)

Figure 1: Number of bits required for typical n, p

If some applications(or paranoid users) need an absol ute cer-
tainty that each signatureis unique, then we offer the follow-
ing enhanced identification scheme. Handles are extended to
have two fields: aunique publisher field and the signature of
the object. The publisher field is the unique code of the site
that first publishesthe object; this publisher codeis assigned
to the site by some authority. The publisher field of an object
does not change when the object migrates to other reposito-
ries. The second field is the same as the signature described
earlier. When a site creates a new object, it first stores its
publisher field in the object header. Then it computes the
signature of this extended object and checks if any other 1o-
cal object has the same signature. In the extremely rare case
thereisaconflict, we add a discriminator, a random string of
bytes, a the end of the new object. The discriminator isin-
cluded inthe computation of the signature (and therefore will
make the object map to adifferent signature), but it isfiltered
out when the object is returned to a user. From then on, the
handle of an object is computed (at any site) by reading its
publisher value and adding to it the object signature.

2.2 No Deletions

Because of our handle scheme, objects cannot be updated in
place. That is, if the contents of an object are modified, it
automatically becomes a new object, with adifferent handle.
This is actually an important advantage, since it eliminates
many sources of confusion. For instance, one cannot correct
atypo in areport and make it pass as the same object. (We
do provide a higher level mechanisms for tracking versions
of an object; see Section 5.) Similarly, if a stored object is
corrupted due to adisk error, the corrupted object will not be
confused with the original.

Another fundamental rule in our architecture is that objects
are never (voluntarily) deleted. Allowingdeletionsisdanger-
ous when sites are managed independently; in particular, it
makes it hard to distinguish between a del eted object and one
that was corrupted (“morphed” into another) and needs to be
restored. Ruling out deletionsis natura in adigital library,
whereitisimportant to keep ahistorical record. Thus, books
are not “burned” but “removed from circulation.” We can
provide an anaogous high level mechanism for indicating

that certain objects should not be provided to the public.

Having immutabl e objects presents some management chal-
lenges. For example, say we create anew version Y of some
object (say avideo clip) X. We cannot mark directly X to
indicate there is a new version Y that should be accessed,
because thiswould be an in-place update to X. In Section 5
we show how we can “indirectly” record such changes. Of
course, having no deletions increases storage requirements.
We do not believe thisis an important issue because (1) stor-
age costs are so low, and (2) we are only archiving in this
fashion library objects, not al possible data.

2.3 Layered Architecture

Since each DLR site may be implemented differently, it is
important to have well defined and as simple as possible site
interfaces. Furthermore, it is aso important to have clean
interfaces for serviceswithinasite, so that different software
systems could be used to implement individual components.
We achieve thisin our architecture by defining service layers
a each site. Thelayersinclude:

1. Object Store Layer: The Object Store layer uses a Data
Sore (e.g., file system, database management system) to
persistently save objects. This layer may use its own
scheme to identify objects (e.g., file names, tuple-ids).
We refer to these locdl identifiersas disk-ids.

2. ldentity Layer: Thislayer has two main functions: (i) it
provides access to objects via their handles (signatures);
and (ii) it providesbasic facilitiesfor reporting changes to
its objects to other interested parties.

3. Complex objects layer: Manages collections of related
objects. Itsservicescould beused to maintainthedifferent
versions (or representations) of a document.

4. Reliability layer: Coordinates replication of objects to
multiple stores, for long term archiving. The assumption
is that the Object Store layer makes a reasonable effort
a reliable storage, but it cannot be counted on to keep
objects forever

5. Upper layers. Providemechanismsfor protectingintellec-
tual property, enforcing security, and charging customers
under various revenue models. It can aso provide asso-
ciative search for objects, based on metadata or contents
of objects, aswell as user access.

In Figure2 weillustratethelayers of aDLR. Each “column”
inthefigurerepresentsasite, and each “row” asoftwarelayer.
We call the implementation of alayer at asiteacdll, and the
complete repository a cellular DLR. Cells can collaborate
with othersto achieve their goas. For example, thereliability
cell at Site 1 communicates with the reliability cell at Site 2
Cdlsbeow therdiability layer only deal withtheir locd site.
In this paper we only study the grayed-out cells.

4 2\ 4 2\
‘ User Acess } User Acess ‘
I I
‘ Security and Accounting } Security and Accounting ‘
I I
‘ Import } Import ‘
I I

‘ Metadata and Indexing

Metadata and Indexing ‘
I

\
|
\
|
\
|
|
Reliability |
I
|
|
|

\
\
| | Reliability |
I
‘ Complex Object ‘ Complex Object ‘
I I
| | dentity | I dentity |
I I
‘ Object Store ‘ Object Store ‘
— 5 —
& J & J
Sitel Site2

Figure 2: Layers of a Cellular Repository.

2.4 Awareness Everywhere

Awareness services (standing orders, subscriptions, aerts)
areimportant in digitd libraries. They are also important for
our reliability and indexing layers: if one site is backing up
another, it must be aware of new objectsor corrupted objects
to take appropriate action. Similarly, to maintain an index
up-to-date, changes need to be propagated. In many systems,
awareness services are added as an afterthought, once the
base storage system is developed, and this makes it hard to
detect all changes. In our architecture, awareness services
are an integral part of every layer. This makesit possible to
build very reliable awareness services, that can be used for
replication and indexing.

2.5 Disposable Auxiliary Structures

Layers typically maintain auxiliary structures for improving
performance. Inour architecturethese structuresare designed
to be disposable, so they can bereconstructed from the under-
lying digital objects. Toillustrate, consider the I dentity |ayer.
For efficient lookup, it needs an index structure that maps a
handle (signature) into thelocal disk-id (e.g., file name). One
optionwould beto storethisindex asadigita object, making
it part of the DLR. However, this opens the door for incon-
sistencies. For instance, the index may say that the object
with handle &' can be found at disk-id D, but the signature
of the object at disk-id D isnot H. Instead, we say that no
auxiliary structures are part of the DLR. (The structures may
be on secondary storage that in not part of the DLR.) If the
structures become corrupted or inconsistent with the DLR,
they should be deleted and reconstructed from scratch.

In addition to avoiding potential inconsistencies, this ap-
proach also makes it easy to migrate objects to a new store,
when the old one becomes obsolete. Auxiliary structures,
which are typically intricate, do not have to be migrated to
the new system. The new system can simply obtains the
digital objects, and buildsits own structures, using whatever
implementation it desires.

3 OBJECT STORE LAYER

The Object Storage Layer isthelowest DLR layer. Thislayer
treats objects as sequence of bytes and uses a local disk-ids
to identify objects. The disk-ids are meaningful only to a
specific Data Store and their format varies from data store to
data store. For example, if the Data Store is a standard file
system and each object is saved in adifferent file, the disk-id
could be the file name. On the other hand, if all objects are
saved in asingle sequentia file, then the disk-id could be the
name of that file, the offset into that file, and the length of the
object.

3.1 Object Store Interface
The interface of the Object Storage Layer has the following
functions:

o OS_Get (disk.id):

Read an object given itsdisk-id.

e OS_Put (bag-of _bits):disk.id:

Insert a new object in the repository and return the disk-id
associated withiit.

e OS_Awareness():|ist_of di sk.ids:

List al disk-ids.

Thelast function, OS_Awar eness() , letsaclient perfforma
“scan” of theentirecollection. Thisisthemost primitivetype
of awareness service one can envision. Itssimplicity makesit
easier to implement an Object Store that isvery robust. This
awareness service is used by higher layers when they have
lost their state, or when they wish to verify their state.

For building areliable system, one must not only define the
desired events (what we have done so far in this section), but
also the undesired expected events [8]. The later are those
events that may occur because of failures, but that recovery
mechanisms (at higher layers) will handle. For thislayer, the
undesired expected events include: (i) OS_Get () returning
a corrupted object; (ii) OS_Put () failing to insert an object
(and returning an error); (iii) OS_Awar eness() not return-
ing the disk-idsof all objects ever inserted with OS_Put ()).

3.2 Object Store Implementation

Having an extremely simple interface (e.g., no deletes, prim-
itive awareness) reduces the number of undesired events that
one needs to consider, and makes it possible to build a rock-
solid store, with few “moving parts’ and few thingsthat can
break. In addition, this simple interface alows us to us to
use almost any secondary storage system as a Data Store,
including legacy systems.

Toillustrateapossibleway to build asolid store that supports
thisinterface, consider the following design. Objects can be
placed sequentially on adisk (or tape), with a unique pattern
separating them. The disk-id would be thedisk address of the
first byte. Tolist al handles, wejust scanthedisk sequentially
looking for the special start-of-object pattern. Sincethereare
no deletes or updates, any object found during the scan is an
object to report. Since there are no auxiliary structures (e.g.,

no i-nodetabl es, no free space tables), there are no structures
that can be corrupted. To migrate this collection of objects
to adifferent site, we simply must move this single stream of
objects, and nothing else. We stress that thisis not the only
way to build acell for thislayer, but it isthe way we expect
it to be built in agood, reliable repository.

4 IDENTITY LAYER

The Object Identity Layer provides access to objectsthrough
their globally unique handles, provides an avareness service
based on handles, and attemptsto correct some of thefailures
of its underlying Object Store cell.

In our architecture, digital objects have two components. a
header and a body. For example, from the point of view of
theidentity layer, the body of adigital object containsthebits
giventoan Identity cell for storage. Inthe header, thecell can
store system data (e.g., size of object). The resulting object
(header+body) can then be sent to the object store. Unknown
to the identity layer, the body may contain headers added by
higher layers (eg., the t ype field discussed in Section 5).
Thisana ogousto how packets move between network layers,
with lower layers adding their own headers. However, unlike
network layers, our lower layers do not remove headers when
returning an object to upper layers. The complete headers,
as recorded in the Data Store, must be preserved, so that any
layer can compute the signature and verify it is the correct
object. Of course, each layer only interpretsits own header,
not those of lower or higher layers.

4.1 Identity Interface
The Object Identity Layer implements the following func-
tions, ana ogous to the Object Store functions:

e | L_Put (bag-of _bits): handl e:

Creates an object and returns the global handle associated
withiit.

e | L_Get (handl e): bag-of _bits:

Gets an object given its handle.

o | L_Awar eness(): i st _of _handl es:

Returns all handles of objectsin the repository.

o | L Latest(client):!|ist_of_handl es:

Lists al handles created in the repository since the last time
thecl i ent invoked thisfunction.

Thel L_Put functionisusedto createan object. Thefunction
receives the dataand calls the Object Store layer OS_Put ()
function to save the data on secondary storage. The handle
for the new object iscomputed and returned totheclient. The
| L_Get () function returnsthe object given its handle. We
discuss bel ow how this function can be implemented.

The | L_Awar eness() function liststhe handles of al ob-
jectsinthelocal store. Thel L_Lat est (cl i ent) function
isaspecialized awareness service. We do not explain herein
detail how it operates, but intuitively, it reports objects cre-
ated sincethelast timethecl i ent invoked thisfunction. It
is provided to improve efficiency, sincewith it clients do not

have to be informed of objects they have seen before. Since
I L_Lat est () must rely on auxiliary structures (somehow
recording what new objects have not yet seen by clients) itis
not asreliableasthel L_Awar eness() functionthat simply
scansthe Object Storefor all objects. Reference[3] discusses
optionsfor implementing such an awvareness service.

Undesired expected behavior of this layer includes (i) los-
ing some object; (ii) | L_Put () returning an error; (iii) the
awareness functions not returning al of the handles. The
| dentity layer should attempt to make the probability of these
and other undesired events aslow as possible. Oneway to do
thisisto check for undesired events of the Object Store layer.
Again, notice that our architecture significantly reduces the
number of undesired events. In particular, the“wrong” object
can never bereturnedby al L_Get cal becauseit can betriv-
ialy checked that the object matches the requested handle.
Similarly, we never return a“deleted” object since there are
no deleted objects!

4.2 Identity Implementation

There are two ways to implement the | L_Get (handl e)

function. The first isto obtain al disk-ids from the Object
Layer, and then retrieve each object in turn and compute its
signature, until we find an obj ect whose signature matchesthe
requested handle. The second way is by having the Identity
layer keep an index mapping handles to disk-ids. The index
can be initialized with a complete scan of the Object Store,
and then can be incrementally maintained as new objects are
created. The | L_Get (handl e) function can then simply
lookupthedisk-idfor thegiven handl e, and fetch theobject
from the store.

Notice that indeed this index is disposable, as discussed in
Section 2.5. Asamatter of fact, in agood implementation, the
index will be periodically discarded and rebuilt from scratch,
to ensure that its structures have not been corrupted, i.e., to
reduce the likelihood of undesired events at this layer.

Similarly, thel L_Lat est () function uses auxiliary struc-
tures to track the objects not yet seen by a client. This
structure should also be disposable. It should periodically
be deleted, in order to force clients to use the more general
| L_.Awar eness. Thiscauses theclient to check if it indeed
hasall theobjectsknowntotheldentity layer, and re-initiaize
the auxiliary structure used for futurel L_Lat est cdls.

Asdiscussed earlier, the ldentity layer should try to handleas
many undesired eventsof thelower cell. Specifically, suppose
that the Identity layer isservicingal L_Get (handl e) cdl,
and that through its structures has determined that the object
isa di sk-id. Since the cal OS_Cet (di sk.i d) may
return a corrupted object, the Identity cell must check that
the fetched object indeed has handle handl e. If thereis
a discrepancy, the Identity Layer reports that the object is
not found (and maybe attempt to reconstruct the mapping
between handles and disk-ids). However, it cannot restore

the object; this service will be provided by the Reliability
Layer, discussed later on. (Actualy, we cannot be sure the
problem was caused by the Object Store; it could be the case
that theauxiliary structurethat told usthat di sk- i d wasthe
placeto look for the object wasincorrect.)

5 COMPLEX OBJECT LAYER

In a DLR, multiple digital objects may be interrelated. For
example, atechnical report may have several renditions(e.g.,
plain ASCII, postscript, Word97), where each of these is
a simple object. Similarly, a report may consist of a se-
guence of versions, representing the state of the report over
time. The Complex Object layer implements three useful
congtructs, tuples, versions, and sets (among others), that
can be used for implementing higher level notions such as
“technical report,” and “access rights for a movie” In this
paper we do not address the detailsof the high level concepts,
which would be implemented by higher layers. References
[5] and [12], among others, propose specific organizations
for “documents’ and other high level constructs.

Traditiona methods for building complex structures do not
work in our DLR environment because objects cannot be
deleted or modified. For instance, we cannot implement a
set as an object contai ning pointersto other member objects,
since the membership could never be modified. (If the set
represents therenditionsof areport, it would mean that anew
rendition could never be added, for example.) The schemes
we propose in this section alow the structuresto evolve.

A particular Complex Object cell interactswith asinglelden-
tity cell, so al the components of a complex object are as-
sumed to residein the same Identity cell. (A complex object
may be replicated at another site as discussed in Section 6.)

The Complex Object layer adds at ype field to al objects,
as it hands them to the Identity Layer. The typefield isused
to record how the object is used by thislayer. The Complex
Object layer offers its clients an interface (not shown here)
for accessing objects, analogousto that of the |dentify Layer.
For instance, the call CO_Put (bag_of _bits) ishandled
by adding the type base to the bag_of _bi t s, and calling
| L_Put (newbag_of bits). The base type indicates
that this object is not one of the structural objects generated
by the Complex Object layer.

5.1 Tuples

The basis for implementing any complex object is the tuple
structure. A tupleis ssimply an object (of typet upl e) con-
taining an ordered list of object handles. The interface for
tuplesis:

e COCreateTupl e(list_of_handl es): handl e:
Creates a tuple containing the handles passed as parameters;
returns the handl e of the new tuple object.

e COGet Tupl e(handl e) : |i st _of _.handl es:
Returnsthelist of handlesin the given tuple.

Figure 3 illustrates two tuples. Tuple 7} (created first) con-
tainsthe handles of objects O, and O,. We can represent this
as Ty = (01,05). The second tuple 75 is ({01, O2), O3).
Notice one could aso creste thetuple (O1, O2, O3}, butitis
different from 7.

TupleT1
Base
Tuple Object O1
Data
Base
Tuple T2 Object O2
Data
Tuple
Base
Object O3
Data

Figure 3: The tuple << 01,05 >,03 >

5.2 Versions

Versions are a way of implementing updateable objects in
an environment where direct updates are not allowed. When
using versions, we update an object, by creating a “new”
version of it. Versions support these functions:

e COCreateVersionChject(): handle :

Creates anew version object and returnsits handle.

e CO.Update(handl e, newwversion):

Creates anew version of the object with the given handle.

e CORead(handl e): i st _of _handl es:

Returnsthelist of handlesthat are the current versions of the
object.

e COVersions(handl e): i st _of _.handl es:
Returnsthelist of al versions of the object.

Figure 4 illustrates how versions can be implemented using
tuples. Object V; (typever si on obj ect)isthe“anchor”
for the sequence of versions. Version 1 is recorded by the
lower t upl e object inthefigure. Itslist of handles contains
(a) the handle of the anchor version object; (b) the handle of
the object that congtitutesthisversion; and (c) the handle for
the previous version. (If thisistheinitia version, this last
handle is null.) The upper t upl e object records a second
version. Notice that because objects cannot be updated, the
version “chain” goes from more recent to earlier version.
Also, the anchor version object, which identifies this chain,
cannot containalist of all versions. (Wewould need to update
it as new versions are generated.) The structure of Figure 4
was created by the following sequence of calls:

e CO.CreateVersionObject (). Thisreturns the anchor
V1.

e COUpdate(Vi, O1L), where Ol is the handle of the
first version.

e COUpdate(Vi, @),where Q2 isthe second version.

Version 2 (current)
Tuple
P Base
| —=1 Daa
Object 02
Vi
Version Object
Tuple Base
Data
//7
Object O1
L]
Version 1

Figure 4: A document with versions v; and v»

Toread thelatest version of V1, weusethecall CORead(V1),
which returnsahandleto Q2. In our example thereisonly a
singlelatest version, but aswediscussin Section 6, replicating
achain at severa sitesand independently updatingit may lead
to multiplelatest versions.

The Update, Read, and Versions functions need to determine
thelatest version, given an anchor object V. Thismust be done
indirectly. One way isto scan al t upl e objects, looking
for any that reference anchor V. The one(s) that are not ref-
erenced by other tuples are the latest versions. Another way
is to build a disposable structure that maps anchors to their
member objects. Such astructurecan be built by scanning all
t upl e objects, and then incrementally maintained as new
CO.Updat e cdls are made. Our design ensures that this
disposablestructureis not essential for thelong term survival
of the DLR.

To record that a version chain has “ended” (eg., it isinac-
cessible), we can generate a new version that pointsto dis-
tinguished nul | object. The CO_Updat e call will refuseto
create new versions beyond thisfina one. (Wecould actually
define severa “ending” object toindicatedifferent semantics,
e.g., theversion chainisfrozen, it should not be accessed.)

In summary, version objects provide a mechanism “updat-
ing” and “deleting” DLR information. Since thismechanism
builds upon our immutable objects, it still provides very reli-
able and long term storage.

5.3 Sets

Other structures can be implemented in a similar fashion.
For example, Figure 5 illustrates how a set of objects can
be implemented. Each member is a tuple that pointsto the
set anchor (type set), and the actua member object. The
interface for sets may include the functions:

e COCreateSet(): handl e:

Returns the handle of an empty set.

e COl nsert Menber (set _handl e, handl e):
Inserts amember into a set.

e COMenber (set _handl e, obj _handl e): bool ean:

Member M1

Object O1

Tuple Base

Data
Object 02

Tuple
Base
Data
\
Member M2

Figure 5: A set with two members

Returns TRUE if the object obj _handl e isamember of set
set _handl e.

We can have additiona functions for sets such as Union,
Intersection, and Difference, but these are not discussed here.
Aswithversions, set membership can only be determined by
scanning all objects, and looking for those with a given set
anchor. Disposable structures can be implemented to make
thisprocess efficient. Aswe discussinthenext section, when
sets are replicated at different sites, there may be temporary
inconsi stenci es regarding membership.

6 RELIABILITY LAYER

The Reliability Layer copies objects from one site to an-
other to increase the probability that objects persist for ex-
tremely long times. Thisisachieved by establishing replica-
tion agreements between multiple sites to mutually maintain
replicas of objects of a given replication group. For exam-
ple, if the reliability layer at Site 1 establishes areplication
agreement with Site 2 for objects of group 1 (say atech-
nica report series), then every time an object belonging to
(G, is created at one of the sites, a copy must be propagated
to the other site. Note that agreements are multilateral: all
members are responsible for backing up objects at the other
members.

The Reliability layer adds two header fields to al objects, as
it hands them to lower layers for storage. The gr oup field
records the replication group this object belongs to, i.e, it
setsthe desired level of replication. The group is selected by
the client that creates the object in thefirst place. The second
field, agrnt, is used to distinguish objects that represent
agreements from those that do not.

Each replication agreement isrecorded in a version complex
object. The agrmt field in thisobject is set to True, and the
group field is set to the identifier for this group. The content
isalistidentifyingall the sites participating in the agreement.
If the agreement changes, a new version is generated, with
the new participants (and same agr mt and gr oup fields).
Note that all the objects that make up the version agreement
for group G, are themselves in group G;1. Hence, they will
also be backed up to participating sites. Also note that the
replication functionswe describe here can be used to migrate
acollectionfromonesite X toanother siteY” (by first adding

Y to areplication group, and then dropping X).

6.1 Reliability Interface
The interface of the Reliability Layer includesthe following
functions:

o RL_NewAgreenent (): gr_hdl

Creates a new replication agreement, identified by the re-
turned gr _hdl handle. This handle is the group identifier,
and should be given to all object in the group.

e RL Participants(site_list, gr_hdl):

Makessi t el i st thecurrent set of participantsingr _hdl .
¢ The interface aso includes the functions in the Complex
Object interface. For the functionsthat create objects, an ad-
ditiona parameter gr _hdl is added, to indicate the replica
tion group they belong to. Awareness functions are extended
so that objects belonging to a given replication group can be
requested.

6.2 Implementation

When RL_NewAgr eenent () cal is receved, the Relia-
bility cell simply calls CO.Cr eat eVer si onQbj ect (),
receiving a handle Gthat will be used as the group identifier.
Next, the function CO.Updat e(G Ol) iscdledto create
theinitial version of theagreement. Object Ol hasitsagr nt
field setto True, itsgr oup field set to G and itscontentsto an
empty set of sites. Theresult of the RL_NewAgr eenent ()
cal is G, which can then be used by the client to create objects
in thisreplication group.

A DLR administrator can thenissueaRL_Par ti ci pants
call torecordthe participatingsites. That call isissued a only
one of the participating sites, since the sitewill immediately
propagate the news to the other sites. The call generates a
new version of the agreement (in the version chain anchored
by G, containing the new list of participants.

Once an agreement isin place, the Reliability Layer can en-
force it in avariety of ways. Here we illustrate one simple
way, assuming Reliability cell A isthe one actively ensuring
Reliability cell B has copiesfor group G. (Cell B would per-
formasimilar processconcurrently.) Periodicaly, A requests
from B itscompletelist of handles correspondingto object in
group G. To comply, cell B usesitslower avareness services
toget dl object handles(initsstoragepartition), and forwards
those in group Gto A. Cell A performsasimilar scan at its
own site, and then compares the handles. If ahandleis seen
locally but not at B, that object must be copiedto B. (Cell A
asks cell B to create a new identical object. The object may
have existed at B before, but it may have been corrupted.)
Similarly, if an object ismissing locally, it is requested from
B and crested at the locd site.

Note that when asked to replicate objects of acomplex type,
the reliability layer creates shallow duplicates. For example,
suppose that a version object V1 is created, together with a
first version, of say a postscript technica report. Assume
that all these objects are defined to be in group GL. Next,

asecond V1 version is created (e.g., an updated report), but
for some reason its group is defined to be G2. A sitethat is
only in GL will only receive the first version of the report,
and not the second one. Thus, to ensure that a complex
object isfully replicated, all of its components must be inthe
same group. Note that auxiliary tuple objects created by the
Complex Object Layer do not have areplication group field,
since are generated implicitly by the Complex Object layer.
However, those objects still need to be replicated, as part of
the complex structure they participate in. To achieve their
replication, we implicitly assume that the replication group
of atuple object isthe union of the replication groups of the
base objectsit pointsto.

The stored replication agreement isused by a Reliability cell
to “remember” its agreements in case of problems. Let us
consider a few sample problems to illustrate. (It is beyond
the scope of this paper to do a detailed case-by-case failure
analysis.) In our fist scenario, Reliability cell A fails while
participating in group G, loses its state, but the latest agree-
ment for G was not lost at the local site. Cell A restarts
by scanning the local site for all objects' with their agr nt

field set, eventually finding the latest version of agreement
G From that point on, it resumes its backup work with the
other participants. Any Gobjectslost during the failure, will
be reconstructed from the other participants.

In our second scenario, say that when cell A recovers, no
record of agreement (& isfound locally. Hence, cell A does
not know it is participating in G. However, other G sites are
hopefully active, and they will realize that A haslost objects,
and will restore them. Since the agreement for Gisin the
group, it will also be restored.? Eventualy A redlizes there
isan agreement it is participatingin, and resumesits activity.
(Cell A needs to periodically scan itslocal object to ensureit
has accurate information.)

In our third scenario, the latest version of agreement Gis
lost, but some older version survives. When A recovers,
its starts its activity with an out of date list of participants.
This may cause it to temporarily miss some of the sites that
contain replicas, and may cause it to send object copies to
sites that are no longer participants. However, the latest
version of agreement Gwill eventually makeitto A, and A
will eventually operate correctly. We emphasi ze that theonly
“damage’ donein thisscenario isthe creation of non-needed
replicasat sitesthat had dropped out of the agreement. While
un-needed copies may waste some space, they in no way
compromise the objectsthat are already stored.

The reliability layer guarantees an “epidemic” [4] propaga
tion of copies. If welook at agiven object Xingroup G, with

1 This assumesthat Cell A knowswhat its local siteis. We can agreein
advanceon, say, fixed ports for the local layer interfaces.

2 Object G, the anchor for the version chain, is not in group Gsinceit was
created beforethe group existed. However, the versionsin Garein the group
and are sufficient to reconstruct the latest version.

extremely high probability X will be at all Gsites. There may
be periods of time when X is missing at some sites (e.g., a
copy was corrupted), but it would take an unlikely sequence
of failuresto makeit disappear from al Gsites. Notethereis
no notion of a distributed commit for X. Object X is commit-
ted when it is created at one site, and its probability of long
term existence increases as copies are propagated. The fact
that our objectsareimmutable, simplifiesthe protocol and in-
creases the chances it works correctly. In particular, thereis
no danger that the distributed X copiesbecome “inconsi stent.”

When aclient creates an object X, it may wish to know when
it has been replicated at al Gsites, so it knowsit has reached
its “extreme safety” mode. For this, we can add a function
to the Reliability layer that checks if an object isfound at all
participating Gsites.

When complex objects are in the same group, they get repli-
cated and their copies converge. Sites may temporarily have
incomplete information, but we do not view this as a strict
inconsistency. For example, site A may think that atechnical
report isavailablein ASCII and Postscript, while site B may
think itisavailablein ASCII and Word97. If thisinformation
isencoded as a set, eventually both sites will know about all
three formats.

7 A COMPLETE EXAMPLE

Inthissectionwe give an exampl e of how thelayers described
in the previous sections work together. In this example, we
will have two repositories containing technical reports, one
at Stanford and another one at MIT. These two sites have a
replication agreement for al objects bel onging to the techni-
ca report group TRG.

Let ussupposethat an upper cell at Stanford wantsto publish
atechnical report. The publisher anticipatesthat severd ver-
sion of thisdocument may be generated and decidesto use a
“Version” complex object. (For the sake of simplicity, weare
assuming that each version of atechnical report isjust oneob-
ject). Firgt, the publisher asksthe Reliability Cell at Stanford
to create a new version object V' belonging to the replication
group TRG. Recall that the version object does not contain
the data for the technica report (we will save this dataas its
first version). The Rdiability Layer calls the Complex Ob-
ject Layer function CO.Cr eat eVer si onCbj ect (). In
turn, the Complex Object cell generates the version object
and saves it by calling the Identity cell, which calls the Ob-
ject Storecell. Asaresult of these calls, the Reliability Layer
obtains the handle of the version object V.

After creating the version object, the client is now ready to
generate the first version of the technical report. First, the
client creates the technical report object, 7'R;, by cdling
the Put () function in the Reiability cell at Stanford. The
reliability cell setsthe group field to TRG and asks the lower
layerstosavethereport. After creating’l’ Ry, theclient makes
TR, aversionof V by calingtheUpdat e() functioninthe

Religbility Layer. The Rdiability Layer will pass the request
ontotheComplex Object Layer whichwill generatean object,
V1, containing apointer to V', 7' R, , and the previousversion
(which is a NULL pointer in this case as this is the first
version). At the left of Figure 6 we show the state of the
Stanford site (at this moment, the MIT repository would be

empty).

v | Verson v | Verson
Object Object
V1] V1]
L] L]
TR TR1 TR TR1
Version 1 Version 1
Stanford MIT

Figure 6: The repositories after replication.

Asthereisareplication agreement between M1 T and Stanford
for the objectsin the Technica Report group, theMIT (or the
Stanford) Reliability Cell will try sometime later to enforce
the agreement by querying the other reliability cell and find-
ing out that the newly created objects, T'Ry, V, and V4, are
missingintheMIT site. Asdescribedin Section 6, thesimple
way of doing thisquery isto usethe I ._Awareness() func-
tiontoobtainall thehandlesintheother siteand then compare
those handles with the handles on our own site. A more ef-
ficient way of doing this query is to use the IL_Latest()
functionto find which handles have been added to the reposi-
tory sincethelast timeit wasvisited. There are moreefficient
awareness agorithmsthat are outside the scope of this paper.
After finding the handles of the missing objects, the replica
tion process will create replicas of those objectsin the MIT
site. At this moment, the content of the repository is shown
in Figure 6. (We are not showing the Reliability Agreement
Object that we are assuming was created earlier.)

Notethat at this point we could have a synchronization prob-
lem if we concurrently add two new versions, one a MIT
and the other at Stanford. Figure 7 illustratesthis by show-
ing the state after Stanford generated Version 7'R,, and MIT
independently created Version 7'R3. When the replication
process copies the new objects to the other sites, we end up
with multiple latest versions, as shown in Figure 8. That is,
the cal CO.Read(V) will return both T'R, and T'Rs. We
view thisas an application “problem.” Perhapsit wasthein-
tention to have multiple current versions for this report, i.e.,
the Stanford and MIT versions of a jointly authored paper.
If this was not the intention, then the “report creation” layer
should ensure that only one author at a time creates new ver-
sions of areport. This type of sequencing could be enforced
by a synchronization service that is not discussed here.

Let us return to the state of the repository of Figure 6 and
let us suppose that the Stanford Repository has a failure that

Ve@ on |y Ve@ on |y
Object Object

! !

V1 V3

=== || ===

TR TR
Version1 Version 2

TR TR
Version1 Version 3

Stanford MIT

Figure 7: New versions at Stanford and MIT.

Vefsion Vv
Object
V3 V1 V2
== 1
tra|l TR TR qri| TR 1R
Version 3 Version 1 Version 2
Stanford/MIT

Figure 8: Inconsistent State.

completely destroysall itsinformation. After thisfailure, the
reliability process at Stanford cannot recover its data, since
its Reliability Agreement Objects (that indicate where the
replicas are) have been lost. However, some time later, the
Reliability cell a MIT will visit Stanford and it will find out
that some objects, including the Replication Agreement Ob-
jects have been lost at Stanford. The Reliability Cell at MIT
will restore those objects (and potentially some others), a-
lowing the Reliability cell at Stanford to also start recovering
its destroyed digital objects.

8 RELATED WORK

Severa architectures have been proposed and implemented
for digital libraries [1, 7]. These architectures focus on in-
teroperability and distribution, but are not directly concerned
with the problem of long-term reliability.

The task force on preserving digital information [2] has in-
vestigated means of ensuring the long-term safekeeping of
information in digital archives. Asin our architecture, the
task force regards migration as an essential tool in preserving
digital archives. However, thetask force, deliberately, avoids
defining the implementation details for adigital archive.

At the secondary device level, the Petal [9, 10] and Frangi-
pani [15] projects have designed highly-available, scalable
block-level storage systems that are easy to manage. The
availahility of the system is achieved by using data striping
and redundancy. Although these projects consider the prob-
lem of long-term data reliability, their aim is a “file system”
replacement. They allow in-place updates and deletions, and
use application generated filenames (handles).

Inthebusinessworld, Computer Output to Laser Disk (COLD)
systems have been very successful in solving the problem
of long-term archiving of data that is not frequently ac-
cessed. COLD systems were originally designed to replace
microfiche and paper archival applicationswith online com-
puter systems. A typical COLD system capturesthe output of
a computer program and storesit. Typically, the storage me-
diaare CD-ROMshbut nowadays other types of storage media
(magnetic disks, RAID, magnetic tape, and re-writable laser
disks) are aso used [6]. COLD system are monolithic with
very few computers, all of them running exactly the same soft-
ware. This is different from the heterogenous environment
we consider. Storing data on a write-once COLD device
forces the data to be immutable, as in our design. However,
COLD systems aways assume that some persistent storage
is available on a write-many device, which can be used for
some structures. We assume all DLR storage isimmutable.

Systems based on layering have proven effective especialy
in the area of networking. Specificaly, the Open System
Interconnection model (OSl) providesastandard that divides
anetwork in seven layerswith clear responsibilities[14].

9 CONCLUSION

In this paper we have studied an architecture for long-term
archival storage of digital objects. We have argued that we
can build asimple, yet powerful, archival repository by using
signatures as object handles, not allowing deletions, having
awareness services in al layers, and using only disposable
auxiliary structures. Webelievethisarchitectureiswell suited
for a heterogeneous and evolving environment because each
site only needs to agree on some very simple interfaces, on
asignature computation function, and on some simple object
header structure (e.g., for type and group fields). Although
sites may use auxiliary structures, they need not agree on
their details and use. There are no i-node tables, out-of-
synch clocks, inconsistent indexes that can cause us to lose
or corrupt information. Since objects are never deleted or
modified in-place, many sources of confusion are eliminated,
yielding an extremely safe DLR. Migration of information
from an obsolete site to a new one is simple, and can be
performed by the replication services.

ACKNOWLEDGMENTS

Some of the early ideasin this papers were devel oped in talks
with Jerry Saltzer. We would & so want to thank Carl Lagoze
for several useful suggestions.

REFERENCES

1. William Y. Arms. Key concepts in the architecture of
thedigital library. D-Lib Magazine, July 1995.

2. The Commission on Preservation and Access, and The
Research Libraries Group. Report of the Task Force on
Archiving of Digital Information, May 1996.

3. Arturo Crespo and Hector GarciasMolina. Awareness
services for digital libraries. Lecture notesin computer
science, 1324:147-71,1997.

4. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithmsfor replicated database maintenance.
Operating Systems Review, 22(1), January 1988.

5. Document Management Alliance. DMA 1.0 Specifica-
tion Draft, January 1998.

6. P. Gawen. Computer output to optical disk and itsappli-
cation. In Proceedings of the Seventh Annual Confer-
ence on Optical Information Systems, pages 102-106,
July 1990.

7. Robert Kahn and Robert Wilensky. A framework for
distributed digital object services. Technical Report
tn95-01, Corporation for National Research Initiatives
(CNRI), May 1995.

8. W.H. Kohler. A survey of techniques for synchroniza-
tion and recovery in decentralized computer systems.
Computing Surveys, 13(2), June 1981.

9. EdwardK. Lee. Highly-available, scal ablenetwork stor-
age. COMPCON, 1995.

10. Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed virtual disks. ASPLOS, 1995.

11. Stephen Manes. Time and technology threaten digital
archives. The New York Times, April 1997.

12. Jr. Ron Daniel and Carl Lagoze. Extending thewarwick
framework: From metadata containersto active digital
objects. D-Lib Magazine, November 1997.

13. Jeff Rothenberg. Ensuring the longevity of digita in-
formation. Scientific American, 272(1):24-29, January
1995.

14. W. Richard Stevens. UNIX Network Programming.
Prentice Hall, 1990.

15. Chandramohan A. Thekkath, Timothy Mann, and Ed-
ward K. Lee. Frangipani: A scalable distributed file
system. SOSP, 1997.

APPENDIX 1

The probability of not having a signature collision, p, depends on
the size of the collection, n, and the number of bits, b, in the
signature. When we insert the first object the probability of not
having a collision is 1 (as there are no documents to collide with),
for the second document the probability of not having a collision is
(2% —1)/2" asthereare 2° possiblesignatures that can be generated
and all but one of them will not create a collision. In general,
when we have inserted & documents, the probability that the next
document will not create a collision is (2° — k) /2% if k <= 2°, or
0 otherwise. In conclusion, if we assumethat the signature function
uniformly distributes documentsin the signature space, and that the
computation of each document signature is independent, then the
probability that we will not have a collision in a collection of n

documentsis:
20 — & 2b1
p= H 26 (20— n)i2bn @)

k=0
Equation 1isimpractical to usewhenb and» arelarge numbersasthe
factorialswill producean overflow. \We can derive an approximation

by making p = Z;; 1- 2% and using the Taylor expansion for
_k .
the exponential function to obtain p =~ Z;; e 2¢. Solving the

product, we obtain: n(n—1)

pre 2T @

