
Archival Storage for Digital Libraries

Arturo Crespo
Department of Computer Science

Stanford University
E-mail: crespo@cs.stanford.edu

Hector Garcia-Molina
Department of Computer Science

Stanford University
E-mail: hector@cs.stanford.edu

ABSTRACT
We propose an architecture for Digital Library Repositories
that assures long-term archival storage of digital objects. The
architecture is formed by a federation of independent but col-
laborating sites, each managing a collection of digital objects.
The architecture is based on the following key components:
use of signatures as object handles, no deletions of digital
objects, functional layering of services, the presence of an
awareness service in all layers, and use of disposable aux-
iliary structures. Long-term persistence of digital objects is
achieved by creating replicas at several sites.

KEYWORDS: Digital library repository, archival storage,
long-term preservation of data.

1 INTRODUCTION
A digital library repository (DLR) stores the digital objects
that constitute the library. The two key requirements that
distinguish DLRs from other information stores are archival
storage and intellectual property management. The archival
nature of a DLR means that the digital objects (e.g., docu-
ments, technical reports, movies) must be preserved indefi-
nitely, as technologies and organizations evolve[11, 13]. In-
tellectual property management is required because digital
objects will be served beyond the organization that runs the
repository or that owns the information. In this paper we
focus on the archival requirement.

There are two interrelated factors in the archiving of digi-
tal objects: data and meaning preservation. To illustrate,
consider the Mayan inscriptions on their temples. For us to
“read” them, first the carvings and paintings had to be pre-
served (data preservation) over the centuries. Second, the
meaning of their hieroglyphs had to be decoded, say into En-
glish. Thus, to preserve the meaning there needs to be some
translation machinery, which can be based on a lot of guess-
work (as in the case of Mayan writings), or aids left behind
(which are of course extremely hard to provide in advance).
The translation could be done gradually and continuously,
to avoid spanning large differences in representations (e.g.,

translating a document in MS Word 4 to Word 5 to Word 6).

In this paper we focus on data preservation only. This is ad-
mittedly the much simpler of the two problems, but clearly,
without data preservation as a first step, meaning cannot be
preserved. Thus, we view a digital object as a bag of bits
(with some simple header information, to be discussed). We
will not concern ourselves here on whether this object is a
postscript file (or any other format), the document that ex-
plains how postscript is interpreted (an aid for preserving the
meaning of the postscript file), or an object giving the meta-
data for the postscript file (e.g., author, title). However, we
do wish to preserve relationships among objects. That is,
we will develop an identification scheme so that one object
can “point” or “reference” another one. This way, for in-
stance, the metadata object we just discussed can identify the
postscript file it is describing.

Given our problem definition, the reader may wonder if this is
a solved problem. After all, a database system can very reli-
ably store objects and their relationships. This may be true, as
long as the same or compatible software is used to manage the
objects, but is not true otherwise. For instance, suppose that
the Stanford and MIT libraries wish to store backup copies
of each other’s technical reports, but they each use different
database systems. It is not possible (at least with current sys-
tems) to tell the Stanford system that an object is managed
jointly with MIT. Similarly, say that Stanford’s database ven-
dor goes out of business in 500 years, or Stanford decides
to use another vendor. Then migrating the objects elsewhere
can be problematic, since database systems typically repre-
sent reliable objects in ways that are intimately tied to their
architecture and software.

The goal of this paper is to present an architecture for the
archiving of digital objects. The objective is not to replace
database systems, but rather to allow existing and future sys-
tems to work together in preserving an interrelated collection
of digital objects (and their versions) in the simplest and the
most reliable possible way. Also, keep in mind that what we
are describing is the lowest layer(s) of a DLR; higher layers
(not discussed here) would deal with intellectual property,
metadata, security, and so on.

In Section 2 we present the key components of our architec-
ture that make long term archiving feasible. Then in Sec-

tions 3 through 6 we describe the functional components of
the architecture. In Section 7, we present a complete example
that shows how those components work together. Finally, in
Section 8 we discuss related work. Because of space limita-
tions, we cannot provide full details of the architecture, nor
explain how all failures and situations are handled. Instead,
we focus on explaining the main features and on representa-
tive examples.

2 KEY COMPONENTS
Under our architecture, a Digital Library Repository (DLR)
is formed by a collection of independent but collaborating
sites. Each site manages a collection of digital objects and
provides services (to be defined) to other sites. Each site uses
one or more computers, and can run different software, as
long as it follows certain simple conventions that we describe
in this paper. Our architecture is based on following key
components.

2.1 Signatures as Object Handles
Each object in a DLR has a handle used to identify and
retrieve it. Handles are internal to the DLR and are not used
by end users to identify documents. (Example: If a user is
searching for report STAN-1998-347-B, a naming facility not
discussed here will translate into the appropriate handle, or
handles if the report has multiple components.)

Given an object, we define its handle to be a (large) signature
computed exclusively from its contents, using a checksum
or a Cyclic Redundancy Check (CRC). If the contents are
smaller than the size of the signature, the object (at creation
time) is “padded” with a random string to make its size larger
than the size of a signature. This scheme has the following
properties, which are important in an archival environment:

� Each site can generate objects and their handles without
consulting other sites. This makes it possible for sites to
operate independently. Furthermore, sites only need to agree
on the signature function, not on software versions, character
sets, timestamp services, and so on.
� The handle for an object can be reconstructed from the
object itself. As we will see, this is an extremely useful
property, since we do not need to reliably save any handle-
to-object mappings.
� If copies of an object are made at different sites, all copies
will have identical handles. This may seem disconcerting at
first, but if the contents are identical, it makes management
simpler to call “a spade a spade.”
� Objects with different contents will, with extremely high
probability, have different handles.

The last item requires some discussion, since it may be pos-
sible that two different objects share a handle, which would
be disastrous. However, by making the signature large (e.g.,
128 bits or more), the likelihood of this disaster happening is
so extremely low that it is not rational to worry about it. To
illustrate, in Appendix 1 we derive a bound for the probability
p that there is no disaster in a DLR with n objects and sig-

natures of size b bits. The bound is extremely conservative,
but yet we see that, say, a 256 bit signature can make even a
DLR with 10 billion objects incredibly safe.

Collection Probability of Signature
Size (n) no collisions (p) Size (b)

107 1� 10�9 76 bits (10 bytes)
108 1� 10�9 83 bits (11 bytes)
109 1� 10�9 89 bits (12 bytes)
107 1� 10�24 128 bits (16 bytes)
107 1� 10�63 256 bits (32 bytes)
1010 1� 10�18 128 bits (16 bytes)
1010 1� 10�57 256 bits (32 bytes)

Figure 1: Number of bits required for typical n, p

If some applications (or paranoid users) need an absolute cer-
tainty that each signature is unique, then we offer the follow-
ing enhanced identification scheme. Handles are extended to
have two fields: a unique publisher field and the signature of
the object. The publisher field is the unique code of the site
that first publishes the object; this publisher code is assigned
to the site by some authority. The publisher field of an object
does not change when the object migrates to other reposito-
ries. The second field is the same as the signature described
earlier. When a site creates a new object, it first stores its
publisher field in the object header. Then it computes the
signature of this extended object and checks if any other lo-
cal object has the same signature. In the extremely rare case
there is a conflict, we add a discriminator, a random string of
bytes, at the end of the new object. The discriminator is in-
cluded in the computation of the signature (and therefore will
make the object map to a different signature), but it is filtered
out when the object is returned to a user. From then on, the
handle of an object is computed (at any site) by reading its
publisher value and adding to it the object signature.

2.2 No Deletions
Because of our handle scheme, objects cannot be updated in
place. That is, if the contents of an object are modified, it
automatically becomes a new object, with a different handle.
This is actually an important advantage, since it eliminates
many sources of confusion. For instance, one cannot correct
a typo in a report and make it pass as the same object. (We
do provide a higher level mechanisms for tracking versions
of an object; see Section 5.) Similarly, if a stored object is
corrupted due to a disk error, the corrupted object will not be
confused with the original.

Another fundamental rule in our architecture is that objects
are never (voluntarily)deleted. Allowing deletions is danger-
ous when sites are managed independently; in particular, it
makes it hard to distinguish between a deleted object and one
that was corrupted (“morphed” into another) and needs to be
restored. Ruling out deletions is natural in a digital library,
where it is important to keep a historical record. Thus, books
are not “burned” but “removed from circulation.” We can
provide an analogous high level mechanism for indicating

that certain objects should not be provided to the public.

Having immutable objects presents some management chal-
lenges. For example, say we create a new version Y of some
object (say a video clip) X. We cannot mark directly X to
indicate there is a new version Y that should be accessed,
because this would be an in-place update to X. In Section 5
we show how we can “indirectly” record such changes. Of
course, having no deletions increases storage requirements.
We do not believe this is an important issue because (1) stor-
age costs are so low, and (2) we are only archiving in this
fashion library objects, not all possible data.

2.3 Layered Architecture
Since each DLR site may be implemented differently, it is
important to have well defined and as simple as possible site
interfaces. Furthermore, it is also important to have clean
interfaces for services within a site, so that different software
systems could be used to implement individual components.
We achieve this in our architecture by defining service layers
at each site. The layers include:

1. Object Store Layer: The Object Store layer uses a Data
Store (e.g., file system, database management system) to
persistently save objects. This layer may use its own
scheme to identify objects (e.g., file names, tuple-ids).
We refer to these local identifiers as disk-ids.

2. Identity Layer: This layer has two main functions: (i) it
provides access to objects via their handles (signatures);
and (ii) it provides basic facilities for reporting changes to
its objects to other interested parties.

3. Complex objects layer: Manages collections of related
objects. Its services could be used to maintain the different
versions (or representations) of a document.

4. Reliability layer: Coordinates replication of objects to
multiple stores, for long term archiving. The assumption
is that the Object Store layer makes a reasonable effort
at reliable storage, but it cannot be counted on to keep
objects forever

5. Upper layers: Provide mechanisms for protecting intellec-
tual property, enforcing security, and charging customers
under various revenue models. It can also provide asso-
ciative search for objects, based on metadata or contents
of objects, as well as user access.

In Figure 2 we illustrate the layers of a DLR. Each “column”
in the figure represents a site, and each “row” a software layer.
We call the implementation of a layer at a site a cell, and the
complete repository a cellular DLR. Cells can collaborate
with others to achieve their goals. For example, the reliability
cell at Site 1 communicates with the reliability cell at Site 2
Cells below the reliability layer only deal with their local site.
In this paper we only study the grayed-out cells.

Data Store Data Store

User Acess

Security and Accounting

Import

Metadata and Indexing

Reliability

Complex Object

Identity

Object Store

Site 1

User Acess

Security and Accounting

Import

Metadata and Indexing

Reliability

Complex Object

Identity

Site 2

Object Store

Figure 2: Layers of a Cellular Repository.

2.4 Awareness Everywhere
Awareness services (standing orders, subscriptions, alerts)
are important in digital libraries. They are also important for
our reliability and indexing layers: if one site is backing up
another, it must be aware of new objects or corrupted objects
to take appropriate action. Similarly, to maintain an index
up-to-date, changes need to be propagated. In many systems,
awareness services are added as an afterthought, once the
base storage system is developed, and this makes it hard to
detect all changes. In our architecture, awareness services
are an integral part of every layer. This makes it possible to
build very reliable awareness services, that can be used for
replication and indexing.

2.5 Disposable Auxiliary Structures
Layers typically maintain auxiliary structures for improving
performance. In our architecture these structures are designed
to be disposable, so they can be reconstructed from the under-
lying digital objects. To illustrate, consider the Identity layer.
For efficient lookup, it needs an index structure that maps a
handle (signature) into the local disk-id (e.g., file name). One
option would be to store this index as a digital object, making
it part of the DLR. However, this opens the door for incon-
sistencies. For instance, the index may say that the object
with handle H can be found at disk-id D, but the signature
of the object at disk-id D is not H. Instead, we say that no
auxiliary structures are part of the DLR. (The structures may
be on secondary storage that in not part of the DLR.) If the
structures become corrupted or inconsistent with the DLR,
they should be deleted and reconstructed from scratch.

In addition to avoiding potential inconsistencies, this ap-
proach also makes it easy to migrate objects to a new store,
when the old one becomes obsolete. Auxiliary structures,
which are typically intricate, do not have to be migrated to
the new system. The new system can simply obtains the
digital objects, and builds its own structures, using whatever
implementation it desires.

3 OBJECT STORE LAYER
The Object Storage Layer is the lowest DLR layer. This layer
treats objects as sequence of bytes and uses a local disk-ids
to identify objects. The disk-ids are meaningful only to a
specific Data Store and their format varies from data store to
data store. For example, if the Data Store is a standard file
system and each object is saved in a different file, the disk-id
could be the file name. On the other hand, if all objects are
saved in a single sequential file, then the disk-id could be the
name of that file, the offset into that file, and the length of the
object.

3.1 Object Store Interface
The interface of the Object Storage Layer has the following
functions:

� OS Get(disk id):
Read an object given its disk-id.
� OS Put(bag of bits):disk id:
Insert a new object in the repository and return the disk-id
associated with it.
� OS Awareness():list of disk ids:
List all disk-ids.

The last function,OS Awareness(), lets a client perform a
“scan” of the entire collection. This is the most primitive type
of awareness service one can envision. Its simplicity makes it
easier to implement an Object Store that is very robust. This
awareness service is used by higher layers when they have
lost their state, or when they wish to verify their state.

For building a reliable system, one must not only define the
desired events (what we have done so far in this section), but
also the undesired expected events [8]. The later are those
events that may occur because of failures, but that recovery
mechanisms (at higher layers) will handle. For this layer, the
undesired expected events include: (i) OS Get() returning
a corrupted object; (ii) OS Put() failing to insert an object
(and returning an error); (iii) OS Awareness() not return-
ing the disk-ids of all objects ever inserted with OS Put()).

3.2 Object Store Implementation
Having an extremely simple interface (e.g., no deletes, prim-
itive awareness) reduces the number of undesired events that
one needs to consider, and makes it possible to build a rock-
solid store, with few “moving parts” and few things that can
break. In addition, this simple interface allows us to us to
use almost any secondary storage system as a Data Store,
including legacy systems.

To illustrate a possible way to build a solid store that supports
this interface, consider the following design. Objects can be
placed sequentially on a disk (or tape), with a unique pattern
separating them. The disk-id would be the disk address of the
first byte. To list all handles,we just scan the disk sequentially
looking for the special start-of-object pattern. Since there are
no deletes or updates, any object found during the scan is an
object to report. Since there are no auxiliary structures (e.g.,

no i-node tables, no free space tables), there are no structures
that can be corrupted. To migrate this collection of objects
to a different site, we simply must move this single stream of
objects, and nothing else. We stress that this is not the only
way to build a cell for this layer, but it is the way we expect
it to be built in a good, reliable repository.

4 IDENTITY LAYER
The Object Identity Layer provides access to objects through
their globally unique handles, provides an awareness service
based on handles, and attempts to correct some of the failures
of its underlying Object Store cell.

In our architecture, digital objects have two components: a
header and a body. For example, from the point of view of
the identity layer, the body of a digital object contains the bits
given to an Identity cell for storage. In the header, the cell can
store system data (e.g., size of object). The resulting object
(header+body) can then be sent to the object store. Unknown
to the identity layer, the body may contain headers added by
higher layers (e.g., the type field discussed in Section 5).
This analogous to how packets move between network layers,
with lower layers adding their own headers. However, unlike
network layers, our lower layers do not remove headers when
returning an object to upper layers. The complete headers,
as recorded in the Data Store, must be preserved, so that any
layer can compute the signature and verify it is the correct
object. Of course, each layer only interprets its own header,
not those of lower or higher layers.

4.1 Identity Interface
The Object Identity Layer implements the following func-
tions, analogous to the Object Store functions:

� IL Put(bag of bits):handle:
Creates an object and returns the global handle associated
with it.
� IL Get(handle):bag of bits:
Gets an object given its handle.
� IL Awareness():list of handles:
Returns all handles of objects in the repository.
� IL Latest(client):list of handles:
Lists all handles created in the repository since the last time
the client invoked this function.

TheIL Put function is used to create an object. The function
receives the data and calls the Object Store layer OS Put()
function to save the data on secondary storage. The handle
for the new object is computed and returned to the client. The
IL Get() function returns the object given its handle. We
discuss below how this function can be implemented.

The IL Awareness() function lists the handles of all ob-
jects in the local store. TheIL Latest(client) function
is a specialized awareness service. We do not explain here in
detail how it operates, but intuitively, it reports objects cre-
ated since the last time the client invoked this function. It
is provided to improve efficiency, since with it clients do not

have to be informed of objects they have seen before. Since
IL Latest() must rely on auxiliary structures (somehow
recording what new objects have not yet seen by clients) it is
not as reliable as theIL Awareness() function that simply
scans the Object Store for all objects. Reference [3] discusses
options for implementing such an awareness service.

Undesired expected behavior of this layer includes (i) los-
ing some object; (ii) IL Put() returning an error; (iii) the
awareness functions not returning all of the handles. The
Identity layer should attempt to make the probability of these
and other undesired events as low as possible. One way to do
this is to check for undesired events of the Object Store layer.
Again, notice that our architecture significantly reduces the
number of undesired events. In particular, the “wrong” object
can never be returned by aIL Get call because it can be triv-
ially checked that the object matches the requested handle.
Similarly, we never return a “deleted” object since there are
no deleted objects!

4.2 Identity Implementation
There are two ways to implement the IL Get(handle)
function. The first is to obtain all disk-ids from the Object
Layer, and then retrieve each object in turn and compute its
signature, until we find an object whose signature matches the
requested handle. The second way is by having the Identity
layer keep an index mapping handles to disk-ids. The index
can be initialized with a complete scan of the Object Store,
and then can be incrementally maintained as new objects are
created. The IL Get(handle) function can then simply
lookup the disk-id for the given handle, and fetch the object
from the store.

Notice that indeed this index is disposable, as discussed in
Section 2.5. As a matter of fact, in a good implementation, the
index will be periodically discarded and rebuilt from scratch,
to ensure that its structures have not been corrupted, i.e., to
reduce the likelihood of undesired events at this layer.

Similarly, the IL Latest() function uses auxiliary struc-
tures to track the objects not yet seen by a client. This
structure should also be disposable. It should periodically
be deleted, in order to force clients to use the more general
IL Awareness. This causes the client to check if it indeed
has all the objects known to the Identity layer, and re-initialize
the auxiliary structure used for future IL Latest calls.

As discussed earlier, the Identity layer should try to handle as
many undesired events of the lower cell. Specifically, suppose
that the Identity layer is servicing a IL Get(handle) call,
and that through its structures has determined that the object
is at disk-id. Since the call OS Get(disk id) may
return a corrupted object, the Identity cell must check that
the fetched object indeed has handle handle. If there is
a discrepancy, the Identity Layer reports that the object is
not found (and maybe attempt to reconstruct the mapping
between handles and disk-ids). However, it cannot restore

the object; this service will be provided by the Reliability
Layer, discussed later on. (Actually, we cannot be sure the
problem was caused by the Object Store; it could be the case
that the auxiliary structure that told us thatdisk-idwas the
place to look for the object was incorrect.)

5 COMPLEX OBJECT LAYER

In a DLR, multiple digital objects may be interrelated. For
example, a technical report may have several renditions (e.g.,
plain ASCII, postscript, Word97), where each of these is
a simple object. Similarly, a report may consist of a se-
quence of versions, representing the state of the report over
time. The Complex Object layer implements three useful
constructs, tuples, versions, and sets (among others), that
can be used for implementing higher level notions such as
“technical report,” and “access rights for a movie.” In this
paper we do not address the details of the high level concepts,
which would be implemented by higher layers. References
[5] and [12], among others, propose specific organizations
for “documents” and other high level constructs.

Traditional methods for building complex structures do not
work in our DLR environment because objects cannot be
deleted or modified. For instance, we cannot implement a
set as an object containing pointers to other member objects,
since the membership could never be modified. (If the set
represents the renditions of a report, it would mean that a new
rendition could never be added, for example.) The schemes
we propose in this section allow the structures to evolve.

A particular Complex Object cell interacts with a single Iden-
tity cell, so all the components of a complex object are as-
sumed to reside in the same Identity cell. (A complex object
may be replicated at another site as discussed in Section 6.)

The Complex Object layer adds a type field to all objects,
as it hands them to the Identity Layer. The type field is used
to record how the object is used by this layer. The Complex
Object layer offers its clients an interface (not shown here)
for accessing objects, analogous to that of the Identify Layer.
For instance, the call CO Put(bag of bits) is handled
by adding the type base to the bag of bits, and calling
IL Put(new bag of bits). The base type indicates
that this object is not one of the structural objects generated
by the Complex Object layer.

5.1 Tuples
The basis for implementing any complex object is the tuple
structure. A tuple is simply an object (of type tuple) con-
taining an ordered list of object handles. The interface for
tuples is:

� CO CreateTuple(list of handles):handle:
Creates a tuple containing the handles passed as parameters;
returns the handle of the new tuple object.
� CO GetTuple(handle):list of handles:
Returns the list of handles in the given tuple.

Figure 3 illustrates two tuples. Tuple T1 (created first) con-
tains the handles of objectsO1 and O2. We can represent this
as T1 = hO1; O2i. The second tuple T2 is hhO1; O2i; O3i.
Notice one could also create the tuple hO1; O2; O3i, but it is
different from T2.

Tuple

Tuple

Tuple T1

Tuple T2

Object O3

Object O1

Object O2

Base

Data

Base

Data

Base

Data

Figure 3: The tuple << O1; O2 >;O3 >

5.2 Versions
Versions are a way of implementing updateable objects in
an environment where direct updates are not allowed. When
using versions, we update an object, by creating a “new”
version of it. Versions support these functions:

� CO CreateVersionObject(): handle :
Creates a new version object and returns its handle.
� CO Update(handle, new version):
Creates a new version of the object with the given handle.
� CO Read(handle):list of handles:
Returns the list of handles that are the current versions of the
object.
� CO Versions(handle):list of handles:
Returns the list of all versions of the object.

Figure 4 illustrates how versions can be implemented using
tuples. Object V1 (typeversion object) is the “anchor”
for the sequence of versions. Version 1 is recorded by the
lower tuple object in the figure. Its list of handles contains
(a) the handle of the anchor version object; (b) the handle of
the object that constitutes this version; and (c) the handle for
the previous version. (If this is the initial version, this last
handle is null.) The upper tuple object records a second
version. Notice that because objects cannot be updated, the
version “chain” goes from more recent to earlier version.
Also, the anchor version object, which identifies this chain,
cannot contain a list of all versions. (We wouldneed to update
it as new versions are generated.) The structure of Figure 4
was created by the following sequence of calls:

� CO CreateVersionObject(). This returns the anchor
V1.
� CO Update(V1, O1), where O1 is the handle of the
first version.
� CO Update(V1, O2), where O2 is the second version.

Tuple

��Version 1

Tuple

Base

Base

V1

Version Object

Version 2 (current)

Object O2

Object O1

Data

Data

Figure 4: A document with versions v1 and v2

To read the latest version ofV1,we use the call CO Read(V1),
which returns a handle to O2. In our example there is only a
single latest version, but as we discuss in Section 6, replicating
a chain at several sites and independently updating it may lead
to multiple latest versions.

The Update, Read, and Versions functions need to determine
the latest version, given an anchor objectV. This must be done
indirectly. One way is to scan all tuple objects, looking
for any that reference anchor V. The one(s) that are not ref-
erenced by other tuples are the latest versions. Another way
is to build a disposable structure that maps anchors to their
member objects. Such a structure can be built by scanning all
tuple objects, and then incrementally maintained as new
CO Update calls are made. Our design ensures that this
disposable structure is not essential for the long term survival
of the DLR.

To record that a version chain has “ended” (e.g., it is inac-
cessible), we can generate a new version that points to dis-
tinguished null object. The CO Update call will refuse to
create new versions beyond this final one. (We could actually
define several “ending” object to indicate different semantics,
e.g., the version chain is frozen, it should not be accessed.)

In summary, version objects provide a mechanism “updat-
ing” and “deleting” DLR information. Since this mechanism
builds upon our immutable objects, it still provides very reli-
able and long term storage.

5.3 Sets
Other structures can be implemented in a similar fashion.
For example, Figure 5 illustrates how a set of objects can
be implemented. Each member is a tuple that points to the
set anchor (type set), and the actual member object. The
interface for sets may include the functions:

� CO CreateSet():handle:
Returns the handle of an empty set.
� CO InsertMember(set handle, handle):

Inserts a member into a set.
� CO Member(set handle, obj handle):boolean:

Member M2

Tuple

Member M1

Tuple

Set

Base

Data

Data

Base

Object O2

Object O1

Figure 5: A set with two members

Returns TRUE if the object obj handle is a member of set
set handle.

We can have additional functions for sets such as Union,
Intersection, and Difference, but these are not discussed here.
As with versions, set membership can only be determined by
scanning all objects, and looking for those with a given set
anchor. Disposable structures can be implemented to make
this process efficient. As we discuss in the next section, when
sets are replicated at different sites, there may be temporary
inconsistencies regarding membership.

6 RELIABILITY LAYER
The Reliability Layer copies objects from one site to an-
other to increase the probability that objects persist for ex-
tremely long times. This is achieved by establishing replica-
tion agreements between multiple sites to mutually maintain
replicas of objects of a given replication group. For exam-
ple, if the reliability layer at Site 1 establishes a replication
agreement with Site 2 for objects of group G1 (say a tech-
nical report series), then every time an object belonging to
G1 is created at one of the sites, a copy must be propagated
to the other site. Note that agreements are multilateral: all
members are responsible for backing up objects at the other
members.

The Reliability layer adds two header fields to all objects, as
it hands them to lower layers for storage. The group field
records the replication group this object belongs to, i.e., it
sets the desired level of replication. The group is selected by
the client that creates the object in the first place. The second
field, agrmt, is used to distinguish objects that represent
agreements from those that do not.

Each replication agreement is recorded in a version complex
object. The agrmt field in this object is set to True, and the
group field is set to the identifier for this group. The content
is a list identifyingall the sites participating in the agreement.
If the agreement changes, a new version is generated, with
the new participants (and same agrmt and group fields).
Note that all the objects that make up the version agreement
for group G1 are themselves in group G1. Hence, they will
also be backed up to participating sites. Also note that the
replication functions we describe here can be used to migrate
a collection from one siteX to another site Y (by first adding

Y to a replication group, and then droppingX).

6.1 Reliability Interface
The interface of the Reliability Layer includes the following
functions:

� RL NewAgreement(): gr hdl

Creates a new replication agreement, identified by the re-
turned gr hdl handle. This handle is the group identifier,
and should be given to all object in the group.
� RL Participants(site list, gr hdl):
Makessite list the current set of participants ingr hdl.
� The interface also includes the functions in the Complex
Object interface. For the functions that create objects, an ad-
ditional parameter gr hdl is added, to indicate the replica-
tion group they belong to. Awareness functions are extended
so that objects belonging to a given replication group can be
requested.

6.2 Implementation
When RL NewAgreement() call is received, the Relia-
bility cell simply calls CO CreateVersionObject(),
receiving a handle G that will be used as the group identifier.
Next, the function CO Update(G, O1) is called to create
the initial version of the agreement. ObjectO1 has its agrmt
field set to True, itsgroup field set toG, and its contents to an
empty set of sites. The result of the RL NewAgreement()
call is G, which can then be used by the client to create objects
in this replication group.

A DLR administrator can then issue a RL Participants
call to record the participatingsites. That call is issued at only
one of the participating sites, since the site will immediately
propagate the news to the other sites. The call generates a
new version of the agreement (in the version chain anchored
by G), containing the new list of participants.

Once an agreement is in place, the Reliability Layer can en-
force it in a variety of ways. Here we illustrate one simple
way, assuming Reliability cell A is the one actively ensuring
Reliability cell B has copies for group G. (Cell B would per-
form a similar process concurrently.) Periodically,A requests
fromB its complete list of handles corresponding to object in
group G. To comply, cell B uses its lower awareness services
to get all object handles (in its storage partition), and forwards
those in group G to A. Cell A performs a similar scan at its
own site, and then compares the handles. If a handle is seen
locally but not at B, that object must be copied toB. (CellA
asks cell B to create a new identical object. The object may
have existed at B before, but it may have been corrupted.)
Similarly, if an object is missing locally, it is requested from
B and created at the local site.

Note that when asked to replicate objects of a complex type,
the reliability layer creates shallow duplicates. For example,
suppose that a version object V1 is created, together with a
first version, of say a postscript technical report. Assume
that all these objects are defined to be in group G1. Next,

a second V1 version is created (e.g., an updated report), but
for some reason its group is defined to be G2. A site that is
only in G1 will only receive the first version of the report,
and not the second one. Thus, to ensure that a complex
object is fully replicated, all of its components must be in the
same group. Note that auxiliary tuple objects created by the
Complex Object Layer do not have a replication group field,
since are generated implicitly by the Complex Object layer.
However, those objects still need to be replicated, as part of
the complex structure they participate in. To achieve their
replication, we implicitly assume that the replication group
of a tuple object is the union of the replication groups of the
base objects it points to.

The stored replication agreement is used by a Reliability cell
to “remember” its agreements in case of problems. Let us
consider a few sample problems to illustrate. (It is beyond
the scope of this paper to do a detailed case-by-case failure
analysis.) In our fist scenario, Reliability cell A fails while
participating in group G, loses its state, but the latest agree-
ment for G was not lost at the local site. Cell A restarts
by scanning the local site for all objects1 with their agrmt
field set, eventually finding the latest version of agreement
G. From that point on, it resumes its backup work with the
other participants. Any G objects lost during the failure, will
be reconstructed from the other participants.

In our second scenario, say that when cell A recovers, no
record of agreement G is found locally. Hence, cell A does
not know it is participating in G. However, other G sites are
hopefully active, and they will realize thatA has lost objects,
and will restore them. Since the agreement for G is in the
group, it will also be restored.2 Eventually A realizes there
is an agreement it is participating in, and resumes its activity.
(Cell A needs to periodically scan its local object to ensure it
has accurate information.)

In our third scenario, the latest version of agreement G is
lost, but some older version survives. When A recovers,
its starts its activity with an out of date list of participants.
This may cause it to temporarily miss some of the sites that
contain replicas, and may cause it to send object copies to
sites that are no longer participants. However, the latest
version of agreement G will eventually make it to A, and A
will eventually operate correctly. We emphasize that the only
“damage” done in this scenario is the creation of non-needed
replicas at sites that had dropped out of the agreement. While
un-needed copies may waste some space, they in no way
compromise the objects that are already stored.

The reliability layer guarantees an “epidemic” [4] propaga-
tion of copies. If we look at a given object X in group G, with

1This assumes that Cell A knows what its local site is. We can agree in
advance on, say, fixed ports for the local layer interfaces.

2Object G, the anchor for the version chain, is not in group G since it was
created before the group existed. However, the versions in G are in the group
and are sufficient to reconstruct the latest version.

extremely high probabilityX will be at all G sites. There may
be periods of time when X is missing at some sites (e.g., a
copy was corrupted), but it would take an unlikely sequence
of failures to make it disappear from all G sites. Note there is
no notion of a distributed commit for X. Object X is commit-
ted when it is created at one site, and its probability of long
term existence increases as copies are propagated. The fact
that our objects are immutable, simplifies the protocol and in-
creases the chances it works correctly. In particular, there is
no danger that the distributedX copies become “inconsistent.”

When a client creates an object X, it may wish to know when
it has been replicated at all G sites, so it knows it has reached
its “extreme safety” mode. For this, we can add a function
to the Reliability layer that checks if an object is found at all
participating G sites.

When complex objects are in the same group, they get repli-
cated and their copies converge. Sites may temporarily have
incomplete information, but we do not view this as a strict
inconsistency. For example, siteA may think that a technical
report is available in ASCII and Postscript, while siteB may
think it is available in ASCII and Word97. If this information
is encoded as a set, eventually both sites will know about all
three formats.

7 A COMPLETE EXAMPLE
In this section we give an example of how the layers described
in the previous sections work together. In this example, we
will have two repositories containing technical reports, one
at Stanford and another one at MIT. These two sites have a
replication agreement for all objects belonging to the techni-
cal report group TRG.

Let us suppose that an upper cell at Stanford wants to publish
a technical report. The publisher anticipates that several ver-
sion of this document may be generated and decides to use a
“Version” complex object. (For the sake of simplicity, we are
assuming that each version of a technical report is just one ob-
ject). First, the publisher asks the Reliability Cell at Stanford
to create a new version object V belonging to the replication
group TRG. Recall that the version object does not contain
the data for the technical report (we will save this data as its
first version). The Reliability Layer calls the Complex Ob-
ject Layer function CO CreateVersionObject(). In
turn, the Complex Object cell generates the version object
and saves it by calling the Identity cell, which calls the Ob-
ject Store cell. As a result of these calls, the ReliabilityLayer
obtains the handle of the version object V .

After creating the version object, the client is now ready to
generate the first version of the technical report. First, the
client creates the technical report object, TR1, by calling
the Put() function in the Reliability cell at Stanford. The
reliability cell sets the group field to TRG and asks the lower
layers to save the report. After creatingTR1, the client makes
TR1 a version of V by calling theUpdate() function in the

Reliability Layer. The Reliability Layer will pass the request
on to the Complex Object Layer which will generate an object,
V1, containing a pointer to V , TR1, and the previous version
(which is a NULL pointer in this case as this is the first
version). At the left of Figure 6 we show the state of the
Stanford site (at this moment, the MIT repository would be
empty).

Version 1
TR TR1

Version
Object

V1

V

Stanford

Version 1
TR TR1

Version
Object

V1

V

MIT

Figure 6: The repositories after replication.

As there is a replication agreement between MIT and Stanford
for the objects in the Technical Report group, the MIT (or the
Stanford) Reliability Cell will try sometime later to enforce
the agreement by querying the other reliability cell and find-
ing out that the newly created objects, TR1, V , and V1, are
missing in the MIT site. As described in Section 6, the simple
way of doing this query is to use the IL Awareness() func-
tion to obtain all the handles in the other site and then compare
those handles with the handles on our own site. A more ef-
ficient way of doing this query is to use the IL Latest()
function to find which handles have been added to the reposi-
tory since the last time it was visited. There are more efficient
awareness algorithms that are outside the scope of this paper.
After finding the handles of the missing objects, the replica-
tion process will create replicas of those objects in the MIT
site. At this moment, the content of the repository is shown
in Figure 6. (We are not showing the Reliability Agreement
Object that we are assuming was created earlier.)

Note that at this point we could have a synchronization prob-
lem if we concurrently add two new versions, one at MIT
and the other at Stanford. Figure 7 illustrates this by show-
ing the state after Stanford generated Version TR2, and MIT
independently created Version TR3. When the replication
process copies the new objects to the other sites, we end up
with multiple latest versions, as shown in Figure 8. That is,
the call CO Read(V) will return both TR2 and TR3. We
view this as an application “problem.” Perhaps it was the in-
tention to have multiple current versions for this report, i.e.,
the Stanford and MIT versions of a jointly authored paper.
If this was not the intention, then the “report creation” layer
should ensure that only one author at a time creates new ver-
sions of a report. This type of sequencing could be enforced
by a synchronization service that is not discussed here.

Let us return to the state of the repository of Figure 6 and
let us suppose that the Stanford Repository has a failure that

TR
Version 1
TR TR1 TR2

Version 2

Version
Object

V

V2V1

Stanford MIT

Version
Object

V

V1

TR
Version 1
TR TR1 TR3

V3

Version 3

Figure 7: New versions at Stanford and MIT.

TR
TR3

V3

Version 3

V2

TR TR2
Version 2

V1

Version
Object

V

Version 1
TR TR1

Stanford/MIT

Figure 8: Inconsistent State.

completely destroys all its information. After this failure, the
reliability process at Stanford cannot recover its data, since
its Reliability Agreement Objects (that indicate where the
replicas are) have been lost. However, some time later, the
Reliability cell at MIT will visit Stanford and it will find out
that some objects, including the Replication Agreement Ob-
jects have been lost at Stanford. The Reliability Cell at MIT
will restore those objects (and potentially some others), al-
lowing the Reliability cell at Stanford to also start recovering
its destroyed digital objects.

8 RELATED WORK
Several architectures have been proposed and implemented
for digital libraries [1, 7]. These architectures focus on in-
teroperability and distribution, but are not directly concerned
with the problem of long-term reliability.

The task force on preserving digital information [2] has in-
vestigated means of ensuring the long-term safekeeping of
information in digital archives. As in our architecture, the
task force regards migration as an essential tool in preserving
digital archives. However, the task force, deliberately, avoids
defining the implementation details for a digital archive.

At the secondary device level, the Petal [9, 10] and Frangi-
pani [15] projects have designed highly-available, scalable
block-level storage systems that are easy to manage. The
availability of the system is achieved by using data striping
and redundancy. Although these projects consider the prob-
lem of long-term data reliability, their aim is a “file system”
replacement. They allow in-place updates and deletions, and
use application generated filenames (handles).

In the business world, Computer Output to Laser Disk (COLD)
systems have been very successful in solving the problem
of long-term archiving of data that is not frequently ac-
cessed. COLD systems were originally designed to replace
microfiche and paper archival applications with online com-
puter systems. A typical COLD system captures the output of
a computer program and stores it. Typically, the storage me-
dia are CD-ROMs but nowadays other types of storage media
(magnetic disks, RAID, magnetic tape, and re-writable laser
disks) are also used [6]. COLD system are monolithic with
very few computers, all of them running exactly the same soft-
ware. This is different from the heterogenous environment
we consider. Storing data on a write-once COLD device
forces the data to be immutable, as in our design. However,
COLD systems always assume that some persistent storage
is available on a write-many device, which can be used for
some structures. We assume all DLR storage is immutable.

Systems based on layering have proven effective especially
in the area of networking. Specifically, the Open System
Interconnection model (OSI) provides a standard that divides
a network in seven layers with clear responsibilities [14].

9 CONCLUSION
In this paper we have studied an architecture for long-term
archival storage of digital objects. We have argued that we
can build a simple, yet powerful, archival repository by using
signatures as object handles, not allowing deletions, having
awareness services in all layers, and using only disposable
auxiliary structures. We believe this architecture is well suited
for a heterogeneous and evolving environment because each
site only needs to agree on some very simple interfaces, on
a signature computation function, and on some simple object
header structure (e.g., for type and group fields). Although
sites may use auxiliary structures, they need not agree on
their details and use. There are no i-node tables, out-of-
synch clocks, inconsistent indexes that can cause us to lose
or corrupt information. Since objects are never deleted or
modified in-place, many sources of confusion are eliminated,
yielding an extremely safe DLR. Migration of information
from an obsolete site to a new one is simple, and can be
performed by the replication services.

ACKNOWLEDGMENTS
Some of the early ideas in this papers were developed in talks
with Jerry Saltzer. We would also want to thank Carl Lagoze
for several useful suggestions.

REFERENCES
1. William Y. Arms. Key concepts in the architecture of

the digital library. D-Lib Magazine, July 1995.

2. The Commission on Preservation and Access, and The
Research Libraries Group. Report of the Task Force on
Archiving of Digital Information, May 1996.

3. Arturo Crespo and Hector Garcia-Molina. Awareness
services for digital libraries. Lecture notes in computer
science, 1324:147–71, 1997.

4. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance.
Operating Systems Review, 22(1), January 1988.

5. Document Management Alliance. DMA 1.0 Specifica-
tion Draft, January 1998.

6. P. Gawen. Computer output to optical disk and its appli-
cation. In Proceedings of the Seventh Annual Confer-
ence on Optical Information Systems, pages 102–106,
July 1990.

7. Robert Kahn and Robert Wilensky. A framework for
distributed digital object services. Technical Report
tn95-01, Corporation for National Research Initiatives
(CNRI), May 1995.

8. W.H. Kohler. A survey of techniques for synchroniza-
tion and recovery in decentralized computer systems.
Computing Surveys, 13(2), June 1981.

9. Edward K. Lee. Highly-available, scalable network stor-
age. COMPCON, 1995.

10. Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed virtual disks. ASPLOS, 1995.

11. Stephen Manes. Time and technology threaten digital
archives. The New York Times, April 1997.

12. Jr. Ron Daniel and Carl Lagoze. Extending the warwick
framework: From metadata containers to active digital
objects. D-Lib Magazine, November 1997.

13. Jeff Rothenberg. Ensuring the longevity of digital in-
formation. Scientific American, 272(1):24–29, January
1995.

14. W. Richard Stevens. UNIX Network Programming.
Prentice Hall, 1990.

15. Chandramohan A. Thekkath, Timothy Mann, and Ed-
ward K. Lee. Frangipani: A scalable distributed file
system. SOSP, 1997.

APPENDIX 1
The probability of not having a signature collision, p, depends on
the size of the collection, n, and the number of bits, b, in the
signature. When we insert the first object the probability of not
having a collision is 1 (as there are no documents to collide with),
for the second document the probability of not having a collision is
(2b�1)=2b as there are 2b possible signatures that can be generated
and all but one of them will not create a collision. In general,
when we have inserted k documents, the probability that the next
document will not create a collision is (2b � k)=2b if k <= 2b, or
0 otherwise. In conclusion, if we assume that the signature function
uniformly distributes documents in the signature space, and that the
computation of each document signature is independent, then the
probability that we will not have a collision in a collection of n
documents is:

p =

n�1Y

k=0

2b � k

2b
=

2b!

(2b � n)!2bn
(1)

Equation 1 is impractical to use when b andn are large numbers as the
factorials will produce an overflow. We can derive an approximation
by making p =

Q
n�1

k=0
1 � k

2b
, and using the Taylor expansion for

the exponential function to obtain p �
Q

n�1

k=0
e
�

k

2b . Solving the
product, we obtain:

p � e
�

n(n�1)

2b+1 (2)

